
Calculate the number of moles of methyl alcohol in 2 molal solutions in $\text{5 L}$. The density of the solution is $0.981\text{ kg}\text{.d}{{\text{m}}^{-3}}\text{ }$. Given that, the molar mass of methyl alcohol is $32\text{ g}\text{.mol}{{\text{ }}^{-1}}\text{ }$.
Answer
483.6k+ views
Hint: The molarity of the solution can be related to the molarity of the solution, the density of the solution, the molar mass of solute as follows,
$\text{ }\dfrac{\text{1}}{\text{m}}\text{ = }\dfrac{\text{d}}{\text{M}}\text{ }-\text{ }\dfrac{{{\text{M}}_{\text{B}}}}{\text{1000}}\text{ }$
Where m is the molality, M is the molarity, d is the density of the solution, and $\text{ }{{\text{M}}_{\text{B}}}\text{ }$ is the molar mass of the solute.
Complete step by step answer:
The molarity is defined as the number of moles dissolved per unit volume in liter.it is used to determine the concentrations of a solution. The molarity is expressed as follows:
$\text{ molarity (M) = }\dfrac{\text{no}\text{. of moles}}{\text{Volume in liter}}\text{ = }\dfrac{\text{n}}{\text{V}}\text{ }$
We have given the following data:
Molality (m) of the solution is 2 molal, $\text{ m = 2 molal }$
The volume of the solution is 5 litre, $\text{ V = 5 L }$
The density of the solution is $\text{ d = }0.981\text{ kg}\text{.d}{{\text{m}}^{-3}}\text{ }$
The molar mass of methyl alcohol is $\text{ M= }32\text{ g}\text{.mol}{{\text{ }}^{-1}}\text{ }$
We have to find the number of moles of methyl alcohol.
The density, molarity (M), molality, and the molar mass of the solute are related as follows,
$\text{ }\dfrac{\text{1}}{\text{m}}\text{ = }\dfrac{\text{d}}{\text{M}}\text{ }-\text{ }\dfrac{{{\text{M}}_{\text{B}}}}{\text{1000}}\text{ }$
Where m is the molality, M is the molarity, d is the density of the solution, and $\text{ }{{\text{M}}_{\text{B}}}\text{ }$ is the molar mass of solute.
Let’s substitute the values to find the molarity of solution. We have,
$\begin{align}
& \text{ }\dfrac{\text{1}}{2}\text{ = }\dfrac{0.981}{\text{M}}\text{ }-\text{ }\dfrac{32}{\text{1000}}\text{ } \\
& \Rightarrow \dfrac{0.981}{\text{M}}\text{ = }\dfrac{\text{1}}{2}\text{ + }\dfrac{32}{\text{1000}}\text{ } \\
& \Rightarrow \dfrac{0.981}{\text{M}}=\text{ }\dfrac{1064}{2000} \\
& \Rightarrow \text{M = }\dfrac{0.981\text{ }\times \text{ }2000\text{ }}{1064}\text{ = 1}\text{.843 M} \\
\end{align}$
Therefore, the molarity of the solution is equal to the $\text{1}\text{.843 M}$.
Since we know that molarity is related to the number of moles. The number of moles can be calculated as,
$\begin{align}
& \text{ molarity (M) = }\dfrac{\text{n}}{\text{V}}\text{ } \\
& \therefore \text{ n = M }\times \text{ V } \\
& \Rightarrow \text{n=}1.83\text{ }\times \text{ 5L = 9}\text{.15 moles} \\
\end{align}$
Therefore, the number of moles of the methyl alcohol solutions are equal to $\text{9}\text{.15}$.
Note: Note that, molality and molarity are the terms to express the concentrations. For dilute solution, the molarity is equal to molality. Since the density of the solutions are close to $\text{ 1}\text{.0 g/mL}$ as, the volume 1 litre is nearly equal to mass 1 kilogram. For solution other than the water the molality and molarity are different and they can be related by the density relation $\text{ d = }\dfrac{\text{m}}{\text{V}}\text{ }$
$\text{ }\dfrac{\text{1}}{\text{m}}\text{ = }\dfrac{\text{d}}{\text{M}}\text{ }-\text{ }\dfrac{{{\text{M}}_{\text{B}}}}{\text{1000}}\text{ }$
Where m is the molality, M is the molarity, d is the density of the solution, and $\text{ }{{\text{M}}_{\text{B}}}\text{ }$ is the molar mass of the solute.
Complete step by step answer:
The molarity is defined as the number of moles dissolved per unit volume in liter.it is used to determine the concentrations of a solution. The molarity is expressed as follows:
$\text{ molarity (M) = }\dfrac{\text{no}\text{. of moles}}{\text{Volume in liter}}\text{ = }\dfrac{\text{n}}{\text{V}}\text{ }$
We have given the following data:
Molality (m) of the solution is 2 molal, $\text{ m = 2 molal }$
The volume of the solution is 5 litre, $\text{ V = 5 L }$
The density of the solution is $\text{ d = }0.981\text{ kg}\text{.d}{{\text{m}}^{-3}}\text{ }$
The molar mass of methyl alcohol is $\text{ M= }32\text{ g}\text{.mol}{{\text{ }}^{-1}}\text{ }$
We have to find the number of moles of methyl alcohol.
The density, molarity (M), molality, and the molar mass of the solute are related as follows,
$\text{ }\dfrac{\text{1}}{\text{m}}\text{ = }\dfrac{\text{d}}{\text{M}}\text{ }-\text{ }\dfrac{{{\text{M}}_{\text{B}}}}{\text{1000}}\text{ }$
Where m is the molality, M is the molarity, d is the density of the solution, and $\text{ }{{\text{M}}_{\text{B}}}\text{ }$ is the molar mass of solute.
Let’s substitute the values to find the molarity of solution. We have,
$\begin{align}
& \text{ }\dfrac{\text{1}}{2}\text{ = }\dfrac{0.981}{\text{M}}\text{ }-\text{ }\dfrac{32}{\text{1000}}\text{ } \\
& \Rightarrow \dfrac{0.981}{\text{M}}\text{ = }\dfrac{\text{1}}{2}\text{ + }\dfrac{32}{\text{1000}}\text{ } \\
& \Rightarrow \dfrac{0.981}{\text{M}}=\text{ }\dfrac{1064}{2000} \\
& \Rightarrow \text{M = }\dfrac{0.981\text{ }\times \text{ }2000\text{ }}{1064}\text{ = 1}\text{.843 M} \\
\end{align}$
Therefore, the molarity of the solution is equal to the $\text{1}\text{.843 M}$.
Since we know that molarity is related to the number of moles. The number of moles can be calculated as,
$\begin{align}
& \text{ molarity (M) = }\dfrac{\text{n}}{\text{V}}\text{ } \\
& \therefore \text{ n = M }\times \text{ V } \\
& \Rightarrow \text{n=}1.83\text{ }\times \text{ 5L = 9}\text{.15 moles} \\
\end{align}$
Therefore, the number of moles of the methyl alcohol solutions are equal to $\text{9}\text{.15}$.
Note: Note that, molality and molarity are the terms to express the concentrations. For dilute solution, the molarity is equal to molality. Since the density of the solutions are close to $\text{ 1}\text{.0 g/mL}$ as, the volume 1 litre is nearly equal to mass 1 kilogram. For solution other than the water the molality and molarity are different and they can be related by the density relation $\text{ d = }\dfrac{\text{m}}{\text{V}}\text{ }$
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE

Describe the effects of the Second World War class 11 social science CBSE
