
Calculate the pH of a buffer solution prepared by dissolving 30g of \[N{a_2}C{O_3}\] in 500 ml of an aqueous solution containing 150 ml of\[1M\;HCl\]. Given \[\left( {{k_a}{\text{ }}for\;HC{O^{ - 3}}\; = {\text{ }}5.63{\text{ }}x{\text{ }}{{10}^{ - 11}}} \right)\]
A.9.86
B.10
C.10.2
D.10.86
Answer
571.8k+ views
Hint: We can use the Henderson-Hasselbalch equation to determine the pH of the buffer solution.
Complete step by step solution:
Mass of sodium carbonate, \[N{a_2}C{O_3}{\text{ }} = {\text{ }}30\;gm\]
Volume of \[HCl{\text{ }} = {\text{ }}150{\text{ }}ml\]
Molarity of \[HCl\]used = \[1M\]
Complete step by step answer:
Now,
\[Molar{\text{ }}Mass{\text{ }}of\;N{a_2}C{O_3} = {\text{ }}\left( {23 \times 2} \right) + 12 + \left( {16 \times 3} \right){\text{ }} = {\text{ }}106\]
No of Moles of \[N{a_2}C{O_3}\] = \[\dfrac{{{\text{mass}}}}{{{\text{molar mass}}}} = \dfrac{{30}}{{106}}\] = \[0.28\;mole\]
\[No{\text{ }}of{\text{ }}Moles{\text{ }}of\;HCl = molarity \times Volume{\text{ }}Litre\]
Therefore, No of Moles of \[HCl\] = \[1{\text{ }} \times {\text{ }}0.15{\text{ }} = {\text{ }}0.15{\text{ }}\;mole\]
As mentioned in the question, the chemical equation for the reaction is
\[{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}{\text{ + HCl}} \Leftrightarrow {\text{NaCl + N}}{{\text{a}}_{\text{2}}}{\text{HC}}{{\text{O}}_{\text{3}}}\]
\[{\text{N}}{{\text{a}}_{\text{2}}}{\text{HC}}{{\text{O}}_{\text{3}}}{\text{}} \to {\text{N}}{{\text{a}}^{\text{ + }}}{\text{ + HC}}{{\text{O}}^{{\text{3 - }}}}\]
So, during the reaction of sodium carbonate and hydrochloric acid, 0.15 moles of Na2CO3 will be consumed to react with hydrochloric acid.
Buffer solution is formed due to \[N{a_2}C{O_3} - NaHC{O_3}\]
We know that,
Equivalent of \[N{a_2}C{O_3}\] = Equivalent of \[HCl\]
For\[HCl\], Molarity is equals to Normality,
∴ Equivalent of \[HCl\] = Normality ×Volume =\[1 \times 0.150 = 0.150\]
Equivalent of Na2CO3 = \[\dfrac{{{\text{mass}}}}{{{\text{molar mass}}}} = \dfrac{{30}}{{106}}\] =\[0.283\]
Therefore, Amount of \[N{a_2}C{O_3}\] left after neutralization \[ = 0.28 - 0.15{\text{ }} = {\text{ }}0.13\;mole\]And, 0.150 equivalent of \[N{a_2}C{O_3}\] is converted to \[NaHC{O_3}\]
So, Equivalent of \[NaHC{O_3}\] = 0.150
According to Henderson-Hasselbalch equation,
\[
pH\; = \;pKa\; + \;log\;\dfrac{{\mathop {[C{O_3}]}\nolimits^{2 - } }}{{\mathop {[HC{O_3}]\;}\nolimits^ - }}\;\;\;\; \\
pH{\text{ }}\; = - log(5.63 \times \mathop {10}\nolimits^{ - 11} ) + log\;\dfrac{{0.133}}{{0.150}} \\
pH{\text{ }} = ( - 0.7505 + 11) + log\;\dfrac{{0.133}}{{0.150}}\;\; \\
\]
\[
{pH{\text{ }} = {\text{ }}( - 0.7505 + 11){\text{ }} + {\text{ }}\left( { - 0.05} \right)} \\
{pH{\text{ }} = 10.24 + ( - 0.05)\;} \\
{pH\; = 10.19{\text{ }} = 10.2}
\]
So, pH of the buffer solution formed is 10.2
Hence, the correct option is option ‘C’
Note: We can use it to calculate the isoelectric point of protein. (Point at which Protein neither accepts nor yields proton).it is essential to have the knowledge of molar mass calculation, equivalency calculation for given chemical species to apply Henderson-Hasselbalch equation.
Complete step by step solution:
Mass of sodium carbonate, \[N{a_2}C{O_3}{\text{ }} = {\text{ }}30\;gm\]
Volume of \[HCl{\text{ }} = {\text{ }}150{\text{ }}ml\]
Molarity of \[HCl\]used = \[1M\]
Complete step by step answer:
Now,
\[Molar{\text{ }}Mass{\text{ }}of\;N{a_2}C{O_3} = {\text{ }}\left( {23 \times 2} \right) + 12 + \left( {16 \times 3} \right){\text{ }} = {\text{ }}106\]
No of Moles of \[N{a_2}C{O_3}\] = \[\dfrac{{{\text{mass}}}}{{{\text{molar mass}}}} = \dfrac{{30}}{{106}}\] = \[0.28\;mole\]
\[No{\text{ }}of{\text{ }}Moles{\text{ }}of\;HCl = molarity \times Volume{\text{ }}Litre\]
Therefore, No of Moles of \[HCl\] = \[1{\text{ }} \times {\text{ }}0.15{\text{ }} = {\text{ }}0.15{\text{ }}\;mole\]
As mentioned in the question, the chemical equation for the reaction is
\[{\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}{\text{ + HCl}} \Leftrightarrow {\text{NaCl + N}}{{\text{a}}_{\text{2}}}{\text{HC}}{{\text{O}}_{\text{3}}}\]
\[{\text{N}}{{\text{a}}_{\text{2}}}{\text{HC}}{{\text{O}}_{\text{3}}}{\text{}} \to {\text{N}}{{\text{a}}^{\text{ + }}}{\text{ + HC}}{{\text{O}}^{{\text{3 - }}}}\]
So, during the reaction of sodium carbonate and hydrochloric acid, 0.15 moles of Na2CO3 will be consumed to react with hydrochloric acid.
Buffer solution is formed due to \[N{a_2}C{O_3} - NaHC{O_3}\]
We know that,
Equivalent of \[N{a_2}C{O_3}\] = Equivalent of \[HCl\]
For\[HCl\], Molarity is equals to Normality,
∴ Equivalent of \[HCl\] = Normality ×Volume =\[1 \times 0.150 = 0.150\]
Equivalent of Na2CO3 = \[\dfrac{{{\text{mass}}}}{{{\text{molar mass}}}} = \dfrac{{30}}{{106}}\] =\[0.283\]
Therefore, Amount of \[N{a_2}C{O_3}\] left after neutralization \[ = 0.28 - 0.15{\text{ }} = {\text{ }}0.13\;mole\]And, 0.150 equivalent of \[N{a_2}C{O_3}\] is converted to \[NaHC{O_3}\]
So, Equivalent of \[NaHC{O_3}\] = 0.150
According to Henderson-Hasselbalch equation,
\[
pH\; = \;pKa\; + \;log\;\dfrac{{\mathop {[C{O_3}]}\nolimits^{2 - } }}{{\mathop {[HC{O_3}]\;}\nolimits^ - }}\;\;\;\; \\
pH{\text{ }}\; = - log(5.63 \times \mathop {10}\nolimits^{ - 11} ) + log\;\dfrac{{0.133}}{{0.150}} \\
pH{\text{ }} = ( - 0.7505 + 11) + log\;\dfrac{{0.133}}{{0.150}}\;\; \\
\]
\[
{pH{\text{ }} = {\text{ }}( - 0.7505 + 11){\text{ }} + {\text{ }}\left( { - 0.05} \right)} \\
{pH{\text{ }} = 10.24 + ( - 0.05)\;} \\
{pH\; = 10.19{\text{ }} = 10.2}
\]
So, pH of the buffer solution formed is 10.2
Hence, the correct option is option ‘C’
Note: We can use it to calculate the isoelectric point of protein. (Point at which Protein neither accepts nor yields proton).it is essential to have the knowledge of molar mass calculation, equivalency calculation for given chemical species to apply Henderson-Hasselbalch equation.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

