
Calculate the pH of the following solutions:
(i) \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M HCl}}\]
(ii) \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M NaOH}}\]
Answer
561.6k+ views
Hint:
(i) You can calculate the pH of the solution by using the following formula
\[{\text{pH}} = - {\log _{10}}\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right]\]
Here, the hydronium ion concentration is the sum of the hydronium ion concentrations from the ionization of hydrochloric acid and the autoionization of water.
(ii) You can calculate the pOH of the solution by using the following formula
\[{\text{pOH}} = - {\log _{10}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]\]
Here, the hydroxide ion concentration is the sum of the hydroxide ion concentrations from the ionization of sodium hydroxide and the autoionization of water.
From pOH, you can calculate the pH using the formula \[{\text{pOH = 14}} - {\text{pH}}\] .
Complete answer:
(i) From \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M HCl}}\] solution,
\[\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right] = 1.0{\text{ }} \times {10^{ - 8}}{\text{ M}}\]
From autoionization of water
\[\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right] = 1.0{\text{ }} \times {10^{ - 7}}{\text{ M}}\]
Calculate the total hydronium ion concentration
\[\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right] = 1.0{\text{ }} \times {10^{ - 8}}{\text{ M}} + 1.0{\text{ }} \times {10^{ - 8}}{\text{ M = }}1.1{\text{ }} \times {10^{ - 7}}{\text{ M}}\]
Calculate the pH of the solution
\[{\text{pH}} = - {\log _{10}}\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right]{\text{ = }} - {\log _{10}}1.1{\text{ }} \times {10^{ - 7}}{\text{ M = 6}}{\text{.96}}\]
Hence, the pH of \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M HCl}}\] solution is 6.96.
(ii) From \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M NaOH}}\] solution,
\[\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 1.0{\text{ }} \times {10^{ - 8}}{\text{ M}}\]
From autoionization of water
\[\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 1.0{\text{ }} \times {10^{ - 7}}{\text{ M}}\]
Calculate the total hydroxide ion concentration
\[\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 1.0{\text{ }} \times {10^{ - 8}}{\text{ M}} + 1.0{\text{ }} \times {10^{ - 8}}{\text{ M = }}1.1{\text{ }} \times {10^{ - 7}}{\text{ M}}\]
Calculate the pOH of the solution
\[{\text{pOH}} = - {\log _{10}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]{\text{ = }} - {\log _{10}}1.1{\text{ }} \times {10^{ - 7}}{\text{ M = 6}}{\text{.96}}\]
Calculate the pH of the solution
\[{\text{pH = 14}} - {\text{pOH}} = 14 - {\text{6}}{\text{.96 = 7}}{\text{.04}}\]
Hence, the pH of \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M NaOH}}\] solution is 7.04.
Note:
If you do not consider the autoionization of water, then you will get the wrong answer. For example, for \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M HCl}}\] the pH value will be
\[{\text{pH}} = - {\log _{10}}\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right]{\text{ = }} - {\log _{10}}1.0{\text{ }} \times {10^{ - 8}}{\text{ M = 8}}\]
An acidic solution cannot have pH greater than 7.
Again, for \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M NaOH}}\] the pOH value will be
\[{\text{pOH}} = - {\log _{10}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]{\text{ = }} - {\log _{10}}1.0{\text{ }} \times {10^{ - 8}}{\text{ M = 8}}\]
A basic solution cannot have pOH greater than 7.
(i) You can calculate the pH of the solution by using the following formula
\[{\text{pH}} = - {\log _{10}}\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right]\]
Here, the hydronium ion concentration is the sum of the hydronium ion concentrations from the ionization of hydrochloric acid and the autoionization of water.
(ii) You can calculate the pOH of the solution by using the following formula
\[{\text{pOH}} = - {\log _{10}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]\]
Here, the hydroxide ion concentration is the sum of the hydroxide ion concentrations from the ionization of sodium hydroxide and the autoionization of water.
From pOH, you can calculate the pH using the formula \[{\text{pOH = 14}} - {\text{pH}}\] .
Complete answer:
(i) From \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M HCl}}\] solution,
\[\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right] = 1.0{\text{ }} \times {10^{ - 8}}{\text{ M}}\]
From autoionization of water
\[\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right] = 1.0{\text{ }} \times {10^{ - 7}}{\text{ M}}\]
Calculate the total hydronium ion concentration
\[\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right] = 1.0{\text{ }} \times {10^{ - 8}}{\text{ M}} + 1.0{\text{ }} \times {10^{ - 8}}{\text{ M = }}1.1{\text{ }} \times {10^{ - 7}}{\text{ M}}\]
Calculate the pH of the solution
\[{\text{pH}} = - {\log _{10}}\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right]{\text{ = }} - {\log _{10}}1.1{\text{ }} \times {10^{ - 7}}{\text{ M = 6}}{\text{.96}}\]
Hence, the pH of \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M HCl}}\] solution is 6.96.
(ii) From \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M NaOH}}\] solution,
\[\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 1.0{\text{ }} \times {10^{ - 8}}{\text{ M}}\]
From autoionization of water
\[\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 1.0{\text{ }} \times {10^{ - 7}}{\text{ M}}\]
Calculate the total hydroxide ion concentration
\[\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 1.0{\text{ }} \times {10^{ - 8}}{\text{ M}} + 1.0{\text{ }} \times {10^{ - 8}}{\text{ M = }}1.1{\text{ }} \times {10^{ - 7}}{\text{ M}}\]
Calculate the pOH of the solution
\[{\text{pOH}} = - {\log _{10}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]{\text{ = }} - {\log _{10}}1.1{\text{ }} \times {10^{ - 7}}{\text{ M = 6}}{\text{.96}}\]
Calculate the pH of the solution
\[{\text{pH = 14}} - {\text{pOH}} = 14 - {\text{6}}{\text{.96 = 7}}{\text{.04}}\]
Hence, the pH of \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M NaOH}}\] solution is 7.04.
Note:
If you do not consider the autoionization of water, then you will get the wrong answer. For example, for \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M HCl}}\] the pH value will be
\[{\text{pH}} = - {\log _{10}}\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right]{\text{ = }} - {\log _{10}}1.0{\text{ }} \times {10^{ - 8}}{\text{ M = 8}}\]
An acidic solution cannot have pH greater than 7.
Again, for \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M NaOH}}\] the pOH value will be
\[{\text{pOH}} = - {\log _{10}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]{\text{ = }} - {\log _{10}}1.0{\text{ }} \times {10^{ - 8}}{\text{ M = 8}}\]
A basic solution cannot have pOH greater than 7.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

