
Calculate the pH of the following solutions:
(i) \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M HCl}}\]
(ii) \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M NaOH}}\]
Answer
569.7k+ views
Hint:
(i) You can calculate the pH of the solution by using the following formula
\[{\text{pH}} = - {\log _{10}}\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right]\]
Here, the hydronium ion concentration is the sum of the hydronium ion concentrations from the ionization of hydrochloric acid and the autoionization of water.
(ii) You can calculate the pOH of the solution by using the following formula
\[{\text{pOH}} = - {\log _{10}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]\]
Here, the hydroxide ion concentration is the sum of the hydroxide ion concentrations from the ionization of sodium hydroxide and the autoionization of water.
From pOH, you can calculate the pH using the formula \[{\text{pOH = 14}} - {\text{pH}}\] .
Complete answer:
(i) From \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M HCl}}\] solution,
\[\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right] = 1.0{\text{ }} \times {10^{ - 8}}{\text{ M}}\]
From autoionization of water
\[\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right] = 1.0{\text{ }} \times {10^{ - 7}}{\text{ M}}\]
Calculate the total hydronium ion concentration
\[\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right] = 1.0{\text{ }} \times {10^{ - 8}}{\text{ M}} + 1.0{\text{ }} \times {10^{ - 8}}{\text{ M = }}1.1{\text{ }} \times {10^{ - 7}}{\text{ M}}\]
Calculate the pH of the solution
\[{\text{pH}} = - {\log _{10}}\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right]{\text{ = }} - {\log _{10}}1.1{\text{ }} \times {10^{ - 7}}{\text{ M = 6}}{\text{.96}}\]
Hence, the pH of \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M HCl}}\] solution is 6.96.
(ii) From \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M NaOH}}\] solution,
\[\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 1.0{\text{ }} \times {10^{ - 8}}{\text{ M}}\]
From autoionization of water
\[\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 1.0{\text{ }} \times {10^{ - 7}}{\text{ M}}\]
Calculate the total hydroxide ion concentration
\[\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 1.0{\text{ }} \times {10^{ - 8}}{\text{ M}} + 1.0{\text{ }} \times {10^{ - 8}}{\text{ M = }}1.1{\text{ }} \times {10^{ - 7}}{\text{ M}}\]
Calculate the pOH of the solution
\[{\text{pOH}} = - {\log _{10}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]{\text{ = }} - {\log _{10}}1.1{\text{ }} \times {10^{ - 7}}{\text{ M = 6}}{\text{.96}}\]
Calculate the pH of the solution
\[{\text{pH = 14}} - {\text{pOH}} = 14 - {\text{6}}{\text{.96 = 7}}{\text{.04}}\]
Hence, the pH of \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M NaOH}}\] solution is 7.04.
Note:
If you do not consider the autoionization of water, then you will get the wrong answer. For example, for \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M HCl}}\] the pH value will be
\[{\text{pH}} = - {\log _{10}}\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right]{\text{ = }} - {\log _{10}}1.0{\text{ }} \times {10^{ - 8}}{\text{ M = 8}}\]
An acidic solution cannot have pH greater than 7.
Again, for \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M NaOH}}\] the pOH value will be
\[{\text{pOH}} = - {\log _{10}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]{\text{ = }} - {\log _{10}}1.0{\text{ }} \times {10^{ - 8}}{\text{ M = 8}}\]
A basic solution cannot have pOH greater than 7.
(i) You can calculate the pH of the solution by using the following formula
\[{\text{pH}} = - {\log _{10}}\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right]\]
Here, the hydronium ion concentration is the sum of the hydronium ion concentrations from the ionization of hydrochloric acid and the autoionization of water.
(ii) You can calculate the pOH of the solution by using the following formula
\[{\text{pOH}} = - {\log _{10}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]\]
Here, the hydroxide ion concentration is the sum of the hydroxide ion concentrations from the ionization of sodium hydroxide and the autoionization of water.
From pOH, you can calculate the pH using the formula \[{\text{pOH = 14}} - {\text{pH}}\] .
Complete answer:
(i) From \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M HCl}}\] solution,
\[\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right] = 1.0{\text{ }} \times {10^{ - 8}}{\text{ M}}\]
From autoionization of water
\[\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right] = 1.0{\text{ }} \times {10^{ - 7}}{\text{ M}}\]
Calculate the total hydronium ion concentration
\[\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right] = 1.0{\text{ }} \times {10^{ - 8}}{\text{ M}} + 1.0{\text{ }} \times {10^{ - 8}}{\text{ M = }}1.1{\text{ }} \times {10^{ - 7}}{\text{ M}}\]
Calculate the pH of the solution
\[{\text{pH}} = - {\log _{10}}\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right]{\text{ = }} - {\log _{10}}1.1{\text{ }} \times {10^{ - 7}}{\text{ M = 6}}{\text{.96}}\]
Hence, the pH of \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M HCl}}\] solution is 6.96.
(ii) From \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M NaOH}}\] solution,
\[\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 1.0{\text{ }} \times {10^{ - 8}}{\text{ M}}\]
From autoionization of water
\[\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 1.0{\text{ }} \times {10^{ - 7}}{\text{ M}}\]
Calculate the total hydroxide ion concentration
\[\left[ {{\text{O}}{{\text{H}}^ - }} \right] = 1.0{\text{ }} \times {10^{ - 8}}{\text{ M}} + 1.0{\text{ }} \times {10^{ - 8}}{\text{ M = }}1.1{\text{ }} \times {10^{ - 7}}{\text{ M}}\]
Calculate the pOH of the solution
\[{\text{pOH}} = - {\log _{10}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]{\text{ = }} - {\log _{10}}1.1{\text{ }} \times {10^{ - 7}}{\text{ M = 6}}{\text{.96}}\]
Calculate the pH of the solution
\[{\text{pH = 14}} - {\text{pOH}} = 14 - {\text{6}}{\text{.96 = 7}}{\text{.04}}\]
Hence, the pH of \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M NaOH}}\] solution is 7.04.
Note:
If you do not consider the autoionization of water, then you will get the wrong answer. For example, for \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M HCl}}\] the pH value will be
\[{\text{pH}} = - {\log _{10}}\left[ {{{\text{H}}_3}{{\text{O}}^ + }} \right]{\text{ = }} - {\log _{10}}1.0{\text{ }} \times {10^{ - 8}}{\text{ M = 8}}\]
An acidic solution cannot have pH greater than 7.
Again, for \[1.0{\text{ }} \times {10^{ - 8}}{\text{ M NaOH}}\] the pOH value will be
\[{\text{pOH}} = - {\log _{10}}\left[ {{\text{O}}{{\text{H}}^ - }} \right]{\text{ = }} - {\log _{10}}1.0{\text{ }} \times {10^{ - 8}}{\text{ M = 8}}\]
A basic solution cannot have pOH greater than 7.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

