Answer
Verified
441.9k+ views
Hint:To answer this question, you must recall the first law of thermodynamics. The first law of thermodynamics states that energy in the universe remains constant always, i.e., it is neither created nor destroyed.
Formula used:
First Law of Thermodynamics: $\Delta {\text{U}} = {\text{Q}} - {\text{W}}$
Where, $\Delta {\text{U}}$ is the internal energy of the given closed system
${\text{Q}}$ is the heat released or absorbed during the reversible isothermal expansion of the given gas.
And, ${\text{W}}$ is the work done during the reversible isothermal expansion of the given gas.
The work done in an isothermal reversible expansion is given by,
${\text{W}} = - nRT\ln \left( {\dfrac{{{V_2}}}{{{V_1}}}} \right) = - nRT\ln \left( {\dfrac{{{P_1}}}{{{P_2}}}} \right)$
Where, $n$ is the number of moles of the ideal gas present in the given system
${V_1}$ and ${V_2}$ are the initial and final volumes of the system during the process of expansion.
And, ${P_1}$ and ${P_2}$ are the initial and final pressures of the system during the process of the expansion
Complete step by step answer:
It is given that the process is isothermal, i.e., there is no change in the temperature of the system. Since the internal energy of a system depends on the temperature, hence, we can conclude that the change in internal energy of the system will be zero.
From the equation of the first law of thermodynamics, we get, $\Delta {\text{U}} = {\text{Q}} - {\text{W}}$
$ \Rightarrow {\text{Q}} = - {\text{W}}$
We know that the work done in an isothermal reversible expansion is given by
${\text{W}} = - nRT\ln \left( {\dfrac{{{P_1}}}{{{P_2}}}} \right)$
Substituting the values in the above equation, we get,
${\text{W}} = - \left( 1 \right) \times 8.314 \times 273 \times \ln \left( {\dfrac{1}{{0.1}}} \right)$
$ \Rightarrow {\text{W}} = - 8.314 \times 273 \times \ln 10$
Solving this:
$ \Rightarrow {\text{W}} = - 5226.23{\text{ J}}$
$ {\text{Q}} = 5226.23{\text{ Joules}}$
Note:
The first law of thermodynamics is an adapted form of the law of conservation of energy which has been modified so as to be applied in thermodynamic processes. It distinguishes two types of transfer of energy, as the heat transferred and the thermodynamic work done, during a process and relates them to Internal energy of the system which is a function of a system's state.
Formula used:
First Law of Thermodynamics: $\Delta {\text{U}} = {\text{Q}} - {\text{W}}$
Where, $\Delta {\text{U}}$ is the internal energy of the given closed system
${\text{Q}}$ is the heat released or absorbed during the reversible isothermal expansion of the given gas.
And, ${\text{W}}$ is the work done during the reversible isothermal expansion of the given gas.
The work done in an isothermal reversible expansion is given by,
${\text{W}} = - nRT\ln \left( {\dfrac{{{V_2}}}{{{V_1}}}} \right) = - nRT\ln \left( {\dfrac{{{P_1}}}{{{P_2}}}} \right)$
Where, $n$ is the number of moles of the ideal gas present in the given system
${V_1}$ and ${V_2}$ are the initial and final volumes of the system during the process of expansion.
And, ${P_1}$ and ${P_2}$ are the initial and final pressures of the system during the process of the expansion
Complete step by step answer:
It is given that the process is isothermal, i.e., there is no change in the temperature of the system. Since the internal energy of a system depends on the temperature, hence, we can conclude that the change in internal energy of the system will be zero.
From the equation of the first law of thermodynamics, we get, $\Delta {\text{U}} = {\text{Q}} - {\text{W}}$
$ \Rightarrow {\text{Q}} = - {\text{W}}$
We know that the work done in an isothermal reversible expansion is given by
${\text{W}} = - nRT\ln \left( {\dfrac{{{P_1}}}{{{P_2}}}} \right)$
Substituting the values in the above equation, we get,
${\text{W}} = - \left( 1 \right) \times 8.314 \times 273 \times \ln \left( {\dfrac{1}{{0.1}}} \right)$
$ \Rightarrow {\text{W}} = - 8.314 \times 273 \times \ln 10$
Solving this:
$ \Rightarrow {\text{W}} = - 5226.23{\text{ J}}$
$ {\text{Q}} = 5226.23{\text{ Joules}}$
Note:
The first law of thermodynamics is an adapted form of the law of conservation of energy which has been modified so as to be applied in thermodynamic processes. It distinguishes two types of transfer of energy, as the heat transferred and the thermodynamic work done, during a process and relates them to Internal energy of the system which is a function of a system's state.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers