Answer
Verified
447k+ views
Hint: Relativistic case is used when particle velocity is compared to the speed of light. The relativistic momentum is defined as the $\gamma $ times rest mass times velocity of the particle.
Formula used:
1. Relativistic momentum $p$ is,
$p=\gamma {{m}_{0}}v$
Here,$\gamma =\dfrac{1}{\sqrt{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}}$, $v$ is velocity of particle, $m$ rest mass of the particle,$c$ is speed of light i.e. $3\times {{10}^{8}}m/s$ .
2. Relativistic kinetic energy ${{E}_{k}}$,
${{E}_{k}}=\left( \gamma -1 \right){{m}_{0}}{{c}^{2}}$
Here, ${{m}_{0}}{{c}^{2}}$ is rest mass energy ${{E}_{0}}$ of the particle.
Complete step by step answer:
You have given,
Mass ${{m}_{0}}=1.76\times {{10}^{-27}}kg$
The Relativistic kinetic energy ${{E}_{k}}$is three times the rest mass energy ${{E}_{0}}$,
i.e. ${{E}_{k}}=3{{E}_{0}}......(1)$
you have to find relativistic momentum $p$.
$p=\gamma {{m}_{0}}v......(2)$
To find the relativistic momentum $p$first you have to calculate the velocity $v$and the relativistic factor $\gamma $,
The relativistic kinetic energy ${{E}_{k}}$ ,
${{E}_{k}}=\left( \gamma -1 \right){{m}_{0}}{{c}^{2}}......(3)$
The rest mass energy ${{E}_{0}}$ of the particle is
\[{{E}_{0}}={{m}_{0}}{{c}^{2}}......(4)\]
Put the values of equation 2 and 3 in equation 1,
$\left( \gamma -1 \right){{m}_{0}}{{c}^{2}}=3{{m}_{0}}{{c}^{2}}$
Expand,
$\gamma {{m}_{0}}{{c}^{2}}-{{m}_{0}}{{c}^{2}}=3{{m}_{0}}{{c}^{2}}$
Solve for $\gamma $
$\begin{align}
& \gamma {{m}_{0}}{{c}^{2}}=4{{m}_{0}}{{c}^{2}} \\
& \Rightarrow \gamma =4......(5) \\
\end{align}$
Now, calculate velocity $v$,
You know,
$\gamma =\dfrac{1}{\sqrt{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}}$
Put value of $\gamma $
$4=\dfrac{1}{\sqrt{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}}$
Take reciprocal of equation,
$\sqrt{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}=\dfrac{1}{4}$
Square both sides,
$1-\dfrac{{{v}^{2}}}{{{c}^{2}}}=\dfrac{1}{16}$
Simplify,
$\dfrac{{{v}^{2}}}{{{c}^{2}}}=\dfrac{15}{16}$
Solve for $v$, multiply both sides by ${{c}^{2}}$ and take square root,
$v=\sqrt{\dfrac{15}{16}}c......(5)$
Put the values of equation 5 and 6 in equation 2
$p=4\times 1.76\times {{10}^{-27}}\times \sqrt{\dfrac{15}{16}}3\times {{10}^{8}}$
$\therefore p=2.86\times {{10}^{-18}}kgm/s$.
So, the correct answer is “Option A”.
Note:
Students generally get confused with rest mass energy and rest mass kinetic energy.
So, keep clear in mind that rest mass kinetic energy means the energy of particle at rest i.e. kinetic energy is zero but the rest mass energy term comes from relativistic physics that is given by the Einstein formula of energy mass conservation,
i.e. rest mass energy \[{{E}_{0}}={{m}_{0}}{{c}^{2}}\]
Formula used:
1. Relativistic momentum $p$ is,
$p=\gamma {{m}_{0}}v$
Here,$\gamma =\dfrac{1}{\sqrt{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}}$, $v$ is velocity of particle, $m$ rest mass of the particle,$c$ is speed of light i.e. $3\times {{10}^{8}}m/s$ .
2. Relativistic kinetic energy ${{E}_{k}}$,
${{E}_{k}}=\left( \gamma -1 \right){{m}_{0}}{{c}^{2}}$
Here, ${{m}_{0}}{{c}^{2}}$ is rest mass energy ${{E}_{0}}$ of the particle.
Complete step by step answer:
You have given,
Mass ${{m}_{0}}=1.76\times {{10}^{-27}}kg$
The Relativistic kinetic energy ${{E}_{k}}$is three times the rest mass energy ${{E}_{0}}$,
i.e. ${{E}_{k}}=3{{E}_{0}}......(1)$
you have to find relativistic momentum $p$.
$p=\gamma {{m}_{0}}v......(2)$
To find the relativistic momentum $p$first you have to calculate the velocity $v$and the relativistic factor $\gamma $,
The relativistic kinetic energy ${{E}_{k}}$ ,
${{E}_{k}}=\left( \gamma -1 \right){{m}_{0}}{{c}^{2}}......(3)$
The rest mass energy ${{E}_{0}}$ of the particle is
\[{{E}_{0}}={{m}_{0}}{{c}^{2}}......(4)\]
Put the values of equation 2 and 3 in equation 1,
$\left( \gamma -1 \right){{m}_{0}}{{c}^{2}}=3{{m}_{0}}{{c}^{2}}$
Expand,
$\gamma {{m}_{0}}{{c}^{2}}-{{m}_{0}}{{c}^{2}}=3{{m}_{0}}{{c}^{2}}$
Solve for $\gamma $
$\begin{align}
& \gamma {{m}_{0}}{{c}^{2}}=4{{m}_{0}}{{c}^{2}} \\
& \Rightarrow \gamma =4......(5) \\
\end{align}$
Now, calculate velocity $v$,
You know,
$\gamma =\dfrac{1}{\sqrt{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}}$
Put value of $\gamma $
$4=\dfrac{1}{\sqrt{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}}$
Take reciprocal of equation,
$\sqrt{1-\dfrac{{{v}^{2}}}{{{c}^{2}}}}=\dfrac{1}{4}$
Square both sides,
$1-\dfrac{{{v}^{2}}}{{{c}^{2}}}=\dfrac{1}{16}$
Simplify,
$\dfrac{{{v}^{2}}}{{{c}^{2}}}=\dfrac{15}{16}$
Solve for $v$, multiply both sides by ${{c}^{2}}$ and take square root,
$v=\sqrt{\dfrac{15}{16}}c......(5)$
Put the values of equation 5 and 6 in equation 2
$p=4\times 1.76\times {{10}^{-27}}\times \sqrt{\dfrac{15}{16}}3\times {{10}^{8}}$
$\therefore p=2.86\times {{10}^{-18}}kgm/s$.
So, the correct answer is “Option A”.
Note:
Students generally get confused with rest mass energy and rest mass kinetic energy.
So, keep clear in mind that rest mass kinetic energy means the energy of particle at rest i.e. kinetic energy is zero but the rest mass energy term comes from relativistic physics that is given by the Einstein formula of energy mass conservation,
i.e. rest mass energy \[{{E}_{0}}={{m}_{0}}{{c}^{2}}\]
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE