
Calculate the resultant torque from the following diagram

Answer
476.7k+ views
Hint : The resultant force is the net torque produced by all the forces acting on the body. The torque in one direction should be positive and the other negative.
Formula used: In this solution we will be using the following formula;
where, is the net torque acting on a body, is the individual torque acting on the body.
, where is the magnitude of the torque, is the force acting on the body, and is the perpendicular distance from the axis of interest.
Complete step by step answer
When there is a net torque on a body, it rotates about an axis with an angular acceleration, similarly to a net force creating a linear acceleration. Net torque can be given by
where, is the net torque acting on a body, is the individual torque acting on the body. Torque is a vector quantity, hence, torque in one direction must be made as positive and the other as negative.
Torque is given as
, where is the magnitude of the torque, is the force acting on the body, and is the perpendicular distance from the axis of interest.
Now, making clockwise moment positive and anticlockwise moment negative, we have the torque about O to be
By computation,
.
Hence, the net torque is 110 Nm in the clockwise direction.
Note
For clarity, distances were used directly because, as observed, the distance given already represents the perpendicular distance from the centre of rotation.
Also, we should observe that the 200 N, although a large force in itself, contributes nothing to the torque since its line of action passes through the centre axis. This attribute of torque is why many rotating equipment tend to have long handles, so forces applied to them may generate a large torque.
Formula used: In this solution we will be using the following formula;
Complete step by step answer
When there is a net torque on a body, it rotates about an axis with an angular acceleration, similarly to a net force creating a linear acceleration. Net torque can be given by
Torque is given as
Now, making clockwise moment positive and anticlockwise moment negative, we have the torque about O to be
By computation,
Hence, the net torque is 110 Nm in the clockwise direction.
Note
For clarity, distances were used directly because, as observed, the distance given already represents the perpendicular distance from the centre of rotation.
Also, we should observe that the 200 N, although a large force in itself, contributes nothing to the torque since its line of action passes through the centre axis. This attribute of torque is why many rotating equipment tend to have long handles, so forces applied to them may generate a large torque.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Who built the Grand Trunk Road AChandragupta Maurya class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
