Answer
Verified
430.5k+ views
Hint: The enthalpy is the heat change of a reaction. The standard enthalpy of a reaction is the overall heat change when a reaction occurs between a set of reactants.
Complete answer:
The standard enthalpy of a reaction is defined as the heat change for the transformation of substances from one state to another or conversion of reactants into products. The standards enthalpy change of a reaction is denoted as $\Delta H^\circ .$
The standard enthalpy change of a reaction is expressed by using a mathematical equation as
\[\Delta H{^\circ _r} = \sum\limits_A {{x_A}} \Delta H{^\circ _{{f_A}}}\] where \[\Delta H{^\circ _r}\] is the standard enthalpy of reaction, \[A\] is the reference substance, \[{x_A}\] is the stoichiometric factor of \[A\] , and \[\Delta H{^\circ _{{f_A}}}\] is the standard enthalpy of formation of \[A\] .
For a general reaction, in which a reactant \[A\] is converted into product \[B\] , the standard enthalpy of the reaction is represented as
\[A \to B,{\text{ }}\Delta H^\circ = \Delta H{^\circ _{f(}}_{product)} - \Delta H{^\circ _{f(reac\tan t)}} = \Delta H{^\circ _f}_{_B} - \Delta H{^\circ _{{f_A}}}\]
Thus the enthalpy change of any reaction is determined from the above equation using the given standard enthalpy of formation of the reactants and products.
The given reaction is \[2A + B = 2C + 2D\] , where two moles of \[A\] react with one mole of \[B\] and produces two moles of \[C\] and two moles of \[D\] . Given the heat of formation of \[A,{\text{ }}B,{\text{ }}C{\text{ }}and{\text{ }}D\] are \[ - 269,{\text{ }} - 411,{\text{ }}189,{\text{ }} - 481\] respectively. The unit of heat of formation is expressed as \[KJ/mol\] or\[Kcal/mol\] .
Let us assume the given values are in \[KJ/mol\] so the standard enthalpy change for the reaction is
\[\Delta H{^\circ _{rxn}} = [2\Delta H{^\circ _{f(C)}} + 2\Delta H{^\circ _{f(D)}}] - [2\Delta H{^\circ _{f(A)}} + \Delta H{^\circ _{f(B)}}] \]
\[\Delta H{^\circ _{rxn}} = [2 \times 189 + 2 \times ( - 481)] - [2 \times ( - 269) + ( - 411)] \]
\[\Delta H{^\circ _{rxn}} = [378 - 962] - [ - 538 - 411] \]
\[\Delta H{^\circ _{rxn}} = 365KJ/mol.\]
Note:
The enthalpy change is referred to as the amount of heat which is either absorbed or evolved during the transformation of the reactants into the products at a given temperature and pressure. The positive sign of the heat of reaction indicated that heat is absorbed in the reaction.
Complete answer:
The standard enthalpy of a reaction is defined as the heat change for the transformation of substances from one state to another or conversion of reactants into products. The standards enthalpy change of a reaction is denoted as $\Delta H^\circ .$
The standard enthalpy change of a reaction is expressed by using a mathematical equation as
\[\Delta H{^\circ _r} = \sum\limits_A {{x_A}} \Delta H{^\circ _{{f_A}}}\] where \[\Delta H{^\circ _r}\] is the standard enthalpy of reaction, \[A\] is the reference substance, \[{x_A}\] is the stoichiometric factor of \[A\] , and \[\Delta H{^\circ _{{f_A}}}\] is the standard enthalpy of formation of \[A\] .
For a general reaction, in which a reactant \[A\] is converted into product \[B\] , the standard enthalpy of the reaction is represented as
\[A \to B,{\text{ }}\Delta H^\circ = \Delta H{^\circ _{f(}}_{product)} - \Delta H{^\circ _{f(reac\tan t)}} = \Delta H{^\circ _f}_{_B} - \Delta H{^\circ _{{f_A}}}\]
Thus the enthalpy change of any reaction is determined from the above equation using the given standard enthalpy of formation of the reactants and products.
The given reaction is \[2A + B = 2C + 2D\] , where two moles of \[A\] react with one mole of \[B\] and produces two moles of \[C\] and two moles of \[D\] . Given the heat of formation of \[A,{\text{ }}B,{\text{ }}C{\text{ }}and{\text{ }}D\] are \[ - 269,{\text{ }} - 411,{\text{ }}189,{\text{ }} - 481\] respectively. The unit of heat of formation is expressed as \[KJ/mol\] or\[Kcal/mol\] .
Let us assume the given values are in \[KJ/mol\] so the standard enthalpy change for the reaction is
\[\Delta H{^\circ _{rxn}} = [2\Delta H{^\circ _{f(C)}} + 2\Delta H{^\circ _{f(D)}}] - [2\Delta H{^\circ _{f(A)}} + \Delta H{^\circ _{f(B)}}] \]
\[\Delta H{^\circ _{rxn}} = [2 \times 189 + 2 \times ( - 481)] - [2 \times ( - 269) + ( - 411)] \]
\[\Delta H{^\circ _{rxn}} = [378 - 962] - [ - 538 - 411] \]
\[\Delta H{^\circ _{rxn}} = 365KJ/mol.\]
Note:
The enthalpy change is referred to as the amount of heat which is either absorbed or evolved during the transformation of the reactants into the products at a given temperature and pressure. The positive sign of the heat of reaction indicated that heat is absorbed in the reaction.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE