Answer
Verified
460.5k+ views
Hint: In this question, we need to determine the tension in the rope at a point which is ‘x’ distance from the end A. For this, we will draw the free body diagram of the rope and by using Newton's second law of motion.
Complete step by step answer:
Given that the force F1>F2.
We know by the newton’s second law of motion
\[F = ma - - (i)\]
Here as two forces are acting where F1>F2, so we can write equation (i) as
\[{F_1} - {F_2} = ma\]
This can be written as
\[a = \dfrac{{{F_1} - {F_2}}}{m} - - (ii)\]
Now, since we have to find the tension T in rope from end A so we will draw the free body diagram for the side A at distance x
We know that whenever a tensile force is acting on any object, a tension is experienced in the direction opposite to the force
From the above free body diagram, we can write
\[{F_1} - T = ma - - (iii)\]
Here mass m is the linear mass density, which is equal to
\[m = \dfrac{{Mx}}{L}\]
Now by substituting linear mass density in equation (iii), we get
\[{F_1} - T = \dfrac{{Mx}}{L} \times a\]
Now substitute the value of acceleration from equation (ii), we further get
\[
{F_1} - T = \dfrac{{mx}}{L} \times \dfrac{{{F_1} - {F_2}}}{m} \\
{F_1} - T = \dfrac{x}{L} \times \left( {{F_1} - {F_2}} \right) \\
{F_1} - \dfrac{x}{L} \times \left( {{F_1} - {F_2}} \right) = T \\
{F_1} - \dfrac{{{F_1}x}}{L} + \dfrac{{{F_2}x}}{L} = T \\
{F_1} + \dfrac{x}{L} \times \left( {{F_2} - {F_1}} \right) = T \\
\]
Hence the tension T in the rope at distances x from end A
\[T = {F_1} + \dfrac{x}{L} \times \left( {{F_2} - {F_1}} \right)\]
Note: It is worth noting down here that if the tension exerted on the rope is more than the tensile strength of the rope, then the rope will break; otherwise, not. Moreover, as the pull force on the rope at the side A of the rope is more than the side B so, the acceleration will be towards A only.
Complete step by step answer:
Given that the force F1>F2.
We know by the newton’s second law of motion
\[F = ma - - (i)\]
Here as two forces are acting where F1>F2, so we can write equation (i) as
\[{F_1} - {F_2} = ma\]
This can be written as
\[a = \dfrac{{{F_1} - {F_2}}}{m} - - (ii)\]
Now, since we have to find the tension T in rope from end A so we will draw the free body diagram for the side A at distance x
We know that whenever a tensile force is acting on any object, a tension is experienced in the direction opposite to the force
From the above free body diagram, we can write
\[{F_1} - T = ma - - (iii)\]
Here mass m is the linear mass density, which is equal to
\[m = \dfrac{{Mx}}{L}\]
Now by substituting linear mass density in equation (iii), we get
\[{F_1} - T = \dfrac{{Mx}}{L} \times a\]
Now substitute the value of acceleration from equation (ii), we further get
\[
{F_1} - T = \dfrac{{mx}}{L} \times \dfrac{{{F_1} - {F_2}}}{m} \\
{F_1} - T = \dfrac{x}{L} \times \left( {{F_1} - {F_2}} \right) \\
{F_1} - \dfrac{x}{L} \times \left( {{F_1} - {F_2}} \right) = T \\
{F_1} - \dfrac{{{F_1}x}}{L} + \dfrac{{{F_2}x}}{L} = T \\
{F_1} + \dfrac{x}{L} \times \left( {{F_2} - {F_1}} \right) = T \\
\]
Hence the tension T in the rope at distances x from end A
\[T = {F_1} + \dfrac{x}{L} \times \left( {{F_2} - {F_1}} \right)\]
Note: It is worth noting down here that if the tension exerted on the rope is more than the tensile strength of the rope, then the rope will break; otherwise, not. Moreover, as the pull force on the rope at the side A of the rope is more than the side B so, the acceleration will be towards A only.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE