Answer
Verified
443.4k+ views
Hint: Try to use the Rydberg formula and derive the Balmer formula from there. There I have an equation that relates Rydberg constant, wavelength and the number of orbits the electron jumps into.
Complete step-by step answer:
In order to answer our question, we need to know about the line spectrum. The hydrogen spectrum is an example of line emission spectrum. The line spectrum of hydrogen is obtained by passing an electric discharge through hydrogen as at low pressure. Hydrogen molecules split up into atoms. These electrons absorb energy and electrons get discharged. When these excited electrons come back to ground state they emit electromagnetic radiation of discrete frequencies. Now, when these emitted radiations are passed through prism then discontinuous line spectrum of several isolated sharp lines is observed. This is how the line spectrum of hydrogen looks like:
Now, the relation between wavelength and the number of spectral lines is: $\dfrac{1}{\lambda }=R{{z}^{2}}(\dfrac{1}{{{n}_{1}}^{2}}-\dfrac{1}{{{n}_{2}}^{2}})$, where R= Rydbergs constant z=atomic number(1 in this case). When ${{n}_{1}}=2$, then the series of lines which are obtained by the above formula are called the Balmer series. The hydrogen spectrum consists of several series of spectral lines named after their discoverer. These series are Lyman series, Balmer series, Paschen series, Brackett series and Pfund series. The value $1.09\times {{10}^{7}}$ is called the Rydberg’s constant for the hydrogen atom. Now, let us find our answer by putting the values in the Balmer formula. So, we have:
$\dfrac{1}{\lambda }=1.09\times {{10}^{7}}(\dfrac{1}{{{2}^{2}}}-\dfrac{1}{{{3}^{2}}})=1.09\times {{10}^{7}}(\dfrac{1}{4}-\dfrac{1}{9})=1.09\times {{10}^{7}}(\dfrac{5}{36})$
So, we obtain
$\begin{align}
& \dfrac{1}{\lambda }=1.52\times {{10}^{6}} \\
& So,\,\,\lambda =0.64\times {{10}^{-6}}m \\
\end{align}$
So, the wavelength of the Balmer series for n=3 is $0.64\times {{10}^{-6}}m$.
NOTE: The following table shows the relation between the names of series, their ‘n’ values and their spectral region:
Complete step-by step answer:
In order to answer our question, we need to know about the line spectrum. The hydrogen spectrum is an example of line emission spectrum. The line spectrum of hydrogen is obtained by passing an electric discharge through hydrogen as at low pressure. Hydrogen molecules split up into atoms. These electrons absorb energy and electrons get discharged. When these excited electrons come back to ground state they emit electromagnetic radiation of discrete frequencies. Now, when these emitted radiations are passed through prism then discontinuous line spectrum of several isolated sharp lines is observed. This is how the line spectrum of hydrogen looks like:
Now, the relation between wavelength and the number of spectral lines is: $\dfrac{1}{\lambda }=R{{z}^{2}}(\dfrac{1}{{{n}_{1}}^{2}}-\dfrac{1}{{{n}_{2}}^{2}})$, where R= Rydbergs constant z=atomic number(1 in this case). When ${{n}_{1}}=2$, then the series of lines which are obtained by the above formula are called the Balmer series. The hydrogen spectrum consists of several series of spectral lines named after their discoverer. These series are Lyman series, Balmer series, Paschen series, Brackett series and Pfund series. The value $1.09\times {{10}^{7}}$ is called the Rydberg’s constant for the hydrogen atom. Now, let us find our answer by putting the values in the Balmer formula. So, we have:
$\dfrac{1}{\lambda }=1.09\times {{10}^{7}}(\dfrac{1}{{{2}^{2}}}-\dfrac{1}{{{3}^{2}}})=1.09\times {{10}^{7}}(\dfrac{1}{4}-\dfrac{1}{9})=1.09\times {{10}^{7}}(\dfrac{5}{36})$
So, we obtain
$\begin{align}
& \dfrac{1}{\lambda }=1.52\times {{10}^{6}} \\
& So,\,\,\lambda =0.64\times {{10}^{-6}}m \\
\end{align}$
So, the wavelength of the Balmer series for n=3 is $0.64\times {{10}^{-6}}m$.
NOTE: The following table shows the relation between the names of series, their ‘n’ values and their spectral region:
Series | ${{n}_{1}}$ | ${{n}_{2}}$ | Spectral Region |
Lyman | 1 | 2,3,.. | Ultraviolet |
Balmer | 2 | 3,4,.. | Visible |
Paschen | 3 | 4,5,… | Infrared |
Brackett | 4 | 5,6,… | Infrared |
Pfund | 5 | 6,7,…. | Infrared |
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Write the difference between order and molecularity class 11 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What are noble gases Why are they also called inert class 11 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between calcination and roasting class 11 chemistry CBSE