Answer
Verified
429.9k+ views
Hint: We first express the concept of type 1 error and type 2 error probabilities. Then we state the theorems for calculating the probabilities.
Complete step by step solution:
When the null hypothesis $\left( {{H}_{0}}:\mu ={{\mu }_{0}} \right)$ is true and we reject it, we make a type 1 error. The probability of making a type I error is $\alpha $, which is the level of significance you set for your hypothesis test. An $\alpha $ of 0.05 indicates that we are willing to accept a 5% chance that we are wrong when you reject the null hypothesis.
When the null hypothesis is false and we fail to reject it, you make a type 2 error. The probability of making a type II error is $\beta $, which depends on the power of the test
The formulas for finding the probabilities are
Type 1: \[P\left( \text{rejecting }{{H}_{0}}|{{H}_{0}}\text{ true} \right)\] and Type 2: \[P\left( \text{accepting }{{H}_{0}}|{{H}_{0}}\text{ false} \right)\].
Note:
To lower this risk in type 1, we must use a lower value for $\alpha $. However, using a lower value for alpha means that we will be less likely to detect a true difference if one really exists. We can decrease your risk of committing a type 2 error by ensuring our test has enough power. We can do this by ensuring your sample size is large enough to detect a practical difference when one truly exists.
Complete step by step solution:
When the null hypothesis $\left( {{H}_{0}}:\mu ={{\mu }_{0}} \right)$ is true and we reject it, we make a type 1 error. The probability of making a type I error is $\alpha $, which is the level of significance you set for your hypothesis test. An $\alpha $ of 0.05 indicates that we are willing to accept a 5% chance that we are wrong when you reject the null hypothesis.
When the null hypothesis is false and we fail to reject it, you make a type 2 error. The probability of making a type II error is $\beta $, which depends on the power of the test
The formulas for finding the probabilities are
Type 1: \[P\left( \text{rejecting }{{H}_{0}}|{{H}_{0}}\text{ true} \right)\] and Type 2: \[P\left( \text{accepting }{{H}_{0}}|{{H}_{0}}\text{ false} \right)\].
Note:
To lower this risk in type 1, we must use a lower value for $\alpha $. However, using a lower value for alpha means that we will be less likely to detect a true difference if one really exists. We can decrease your risk of committing a type 2 error by ensuring our test has enough power. We can do this by ensuring your sample size is large enough to detect a practical difference when one truly exists.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE