Answer
Verified
460.5k+ views
Hint: An electrochemical system consists of a vessel containing an electrolyte into which two electrodes are dipped. In an electrolytic cell, a flow of current produces a chemical reaction. This process involves transfer of electrons which changes the oxidation state of the molecule or ions. Electrochemical cells are of two types-electrolytic and voltaic cells.
Nernst equation is the principle behind this problem.
Formula used:
Complete answer: or Complete step by step answer:
The electrodes in the electrochemical cells get oxidized or reduced. Electrochemical cells consists of two half cells. Each half cell has an electrode and an electrolyte. Species from one half (anode) lose electrons (oxidation) and species from other half (cathode) gain electrons (reduction).
In the cell diagram, first part denotes the anodic part while the last part is the cathodic part.
In the cell diagram given, ${\text{Zn}}\left( {\text{s}} \right)\left| {{\text{Z}}{{\text{n}}^{2 + }}} \right.\left( {{\text{aq}}} \right)\left\| {{\text{S}}{{\text{n}}^{2 + }}} \right.\left( {{\text{aq}}} \right)\left| {{\text{Sn}}} \right.\left( {\text{s}} \right)$, zinc get oxidized to ${\text{Z}}{{\text{n}}^{2 + }}$ and ${\text{S}}{{\text{n}}^{2 + }}$ get reduced to ${\text{Sn}}$.
It is given that the concentration of ${\text{Z}}{{\text{n}}^{2 + }}$, $\left[ {{\text{Z}}{{\text{n}}^{2 + }}} \right] = 0.04{\text{M}}$ and that of ${\text{S}}{{\text{n}}^{2 + }}$, $\left[ {{\text{S}}{{\text{n}}^{2 + }}} \right] = 0.03{\text{M}}$
Cell potential at anode, \[{{\text{E}}^ \circ }_{{\text{Zn}}\left| {{\text{Z}}{{\text{n}}^{2 + }}} \right.} = - 0.76{\text{V}}\] and cell potential at cathode, \[{{\text{E}}^ \circ }_{{\text{Sn}}\left| {{\text{S}}{{\text{n}}^{2 + }}} \right.} = - 0.14{\text{V}}\]
Standard potential, ${{\text{E}}^ \circ } = {{\text{E}}^ \circ }_{{\text{cathode}}} - {{\text{E}}^ \circ }_{{\text{anode}}} \Leftrightarrow {{\text{E}}^ \circ } = {{\text{E}}^ \circ }_{{\text{S}}{{\text{n}}^{2 + }}\left| {{\text{Sn}}} \right.} - {{\text{E}}^ \circ }_{{\text{Zn}}\left| {{\text{Z}}{{\text{n}}^{2 + }}} \right.}$
Substituting the values, we get
\[{{\text{E}}^ \circ } = - 0.14{\text{V}} - \left( { - 0.76{\text{V}}} \right) = + 0.62{\text{V}}\]
Now we can use the Nernst equation for finding the cell potential.
\[{\text{E}} = {{\text{E}}^ \circ } - \dfrac{{0.0592}}{{\text{F}}}\log \dfrac{{\left[ {{\text{Z}}{{\text{n}}^{2 + }}} \right]}}{{\left[ {{\text{S}}{{\text{n}}^{2 + }}} \right]}}\]
Substituting the values, we get
\[{\text{E}} = 0.62{\text{V}} - \dfrac{{0.0592}}{2}\log \dfrac{{\left[ {0.04} \right]}}{{\left[ {0.03} \right]}}\]
On simplification, we get
\[{\text{E}} = 0.62{\text{V}} - 0.0296\log 1.2\]
\[{\text{E}} = 0.62{\text{V}} - \left( {3.7 \times {{10}^{ - 3}}} \right)\]
Solving,
\[{\text{E}} = 0.62{\text{V}} - \left( {3.7 \times {{10}^{ - 3}}} \right) = 0.616{\text{V}}\]
Note:
Gibbs’ free energy for a cell can also be calculated using Nernst equation. The Nernst equation allows us to calculate potential when the two cells are not in $1{\text{M}}$ concentration. At equilibrium, forward and reverse reactions occur at equal rates. Thus the cell potential is zero volts. Equilibrium constant can be calculated from the cell potential.
Nernst equation is the principle behind this problem.
Formula used:
Complete answer: or Complete step by step answer:
The electrodes in the electrochemical cells get oxidized or reduced. Electrochemical cells consists of two half cells. Each half cell has an electrode and an electrolyte. Species from one half (anode) lose electrons (oxidation) and species from other half (cathode) gain electrons (reduction).
In the cell diagram, first part denotes the anodic part while the last part is the cathodic part.
In the cell diagram given, ${\text{Zn}}\left( {\text{s}} \right)\left| {{\text{Z}}{{\text{n}}^{2 + }}} \right.\left( {{\text{aq}}} \right)\left\| {{\text{S}}{{\text{n}}^{2 + }}} \right.\left( {{\text{aq}}} \right)\left| {{\text{Sn}}} \right.\left( {\text{s}} \right)$, zinc get oxidized to ${\text{Z}}{{\text{n}}^{2 + }}$ and ${\text{S}}{{\text{n}}^{2 + }}$ get reduced to ${\text{Sn}}$.
It is given that the concentration of ${\text{Z}}{{\text{n}}^{2 + }}$, $\left[ {{\text{Z}}{{\text{n}}^{2 + }}} \right] = 0.04{\text{M}}$ and that of ${\text{S}}{{\text{n}}^{2 + }}$, $\left[ {{\text{S}}{{\text{n}}^{2 + }}} \right] = 0.03{\text{M}}$
Cell potential at anode, \[{{\text{E}}^ \circ }_{{\text{Zn}}\left| {{\text{Z}}{{\text{n}}^{2 + }}} \right.} = - 0.76{\text{V}}\] and cell potential at cathode, \[{{\text{E}}^ \circ }_{{\text{Sn}}\left| {{\text{S}}{{\text{n}}^{2 + }}} \right.} = - 0.14{\text{V}}\]
Standard potential, ${{\text{E}}^ \circ } = {{\text{E}}^ \circ }_{{\text{cathode}}} - {{\text{E}}^ \circ }_{{\text{anode}}} \Leftrightarrow {{\text{E}}^ \circ } = {{\text{E}}^ \circ }_{{\text{S}}{{\text{n}}^{2 + }}\left| {{\text{Sn}}} \right.} - {{\text{E}}^ \circ }_{{\text{Zn}}\left| {{\text{Z}}{{\text{n}}^{2 + }}} \right.}$
Substituting the values, we get
\[{{\text{E}}^ \circ } = - 0.14{\text{V}} - \left( { - 0.76{\text{V}}} \right) = + 0.62{\text{V}}\]
Now we can use the Nernst equation for finding the cell potential.
\[{\text{E}} = {{\text{E}}^ \circ } - \dfrac{{0.0592}}{{\text{F}}}\log \dfrac{{\left[ {{\text{Z}}{{\text{n}}^{2 + }}} \right]}}{{\left[ {{\text{S}}{{\text{n}}^{2 + }}} \right]}}\]
Substituting the values, we get
\[{\text{E}} = 0.62{\text{V}} - \dfrac{{0.0592}}{2}\log \dfrac{{\left[ {0.04} \right]}}{{\left[ {0.03} \right]}}\]
On simplification, we get
\[{\text{E}} = 0.62{\text{V}} - 0.0296\log 1.2\]
\[{\text{E}} = 0.62{\text{V}} - \left( {3.7 \times {{10}^{ - 3}}} \right)\]
Solving,
\[{\text{E}} = 0.62{\text{V}} - \left( {3.7 \times {{10}^{ - 3}}} \right) = 0.616{\text{V}}\]
Note:
Gibbs’ free energy for a cell can also be calculated using Nernst equation. The Nernst equation allows us to calculate potential when the two cells are not in $1{\text{M}}$ concentration. At equilibrium, forward and reverse reactions occur at equal rates. Thus the cell potential is zero volts. Equilibrium constant can be calculated from the cell potential.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE