
Can someone tell me how to prove \[\sin {{78}^{\circ }}+\cos {{132}^{\circ }}=\dfrac{\left( \sqrt{5}-1 \right)}{4}\], in the easiest method.
Answer
530.1k+ views
Hint: In order to prove the given question that is \[\sin {{78}^{\circ }}+\cos {{132}^{\circ }}=\dfrac{\left( \sqrt{5}-1 \right)}{4}\] Split the angle of sine with the help of trigonometric properties of sine and cosine. Simply until you get \[\sin {{18}^{\circ }}\]. Now to find the value of \[\sin {{18}^{\circ }}\]. Assume \[x={{18}^{\circ }}\] and then \[5x={{90}^{\circ }}\]. With the help of cosine properties expand \[\cos \left( 5x-2x \right)\] and use the identity that \[\cos 3x=4{{\cos }^{3}}x-3\cos x=\sin 2x\]. After that simplify it further and solve the quadratic equation \[4{{\sin }^{2}}x+2\sin x-1=0\] with the formula \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] to find the value of \[\sin x\]which is nothing but \[\sin {{18}^{\circ }}\].
Complete step by step solution:
Given equation which needs to be proves is as follows:
\[\sin {{78}^{\circ }}+\cos {{132}^{\circ }}=\dfrac{\left( \sqrt{5}-1 \right)}{4}\]
Consider the Left-Hand-Side of the equation and solve it further:
LHS \[=\sin {{78}^{\circ }}+\cos {{132}^{\circ }}\]
We can write \[{{78}^{\circ }}={{90}^{\circ }}-{{12}^{\circ }}\], substituting this angle of sine in the above equation we get:
\[\Rightarrow \sin \left( {{90}^{\circ }}-{{12}^{\circ }} \right)+\cos {{132}^{\circ }}\]
Apply the trigonometric property of sine and cosine that is \[\sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta \]in the above equation we get:
\[\Rightarrow \cos {{12}^{\circ }}+\cos {{132}^{\circ }}\]
Again, apply another trigonometric property of sine and cosine that is \[\cos A-\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\] in the above equation we get:
\[\Rightarrow 2\cos {{72}^{\circ }}\cos {{60}^{\circ }}\]
We can write \[{{72}^{\circ }}={{90}^{\circ }}-{{18}^{\circ }}\], substituting this angle of sine in the above equation we get:
\[\Rightarrow 2\cos ({{90}^{\circ }}-{{18}^{\circ }})\cdot \dfrac{1}{2}\]
Apply the trigonometric property of sine and cosine that is \[\cos \left( {{90}^{\circ }}-\theta \right)=\sin \theta \]in the above equation we get:
\[\Rightarrow \sin {{18}^{\circ }}\]
To find the value of \[\sin {{18}^{\circ }}\]. We will consider the following:
Let \[x={{18}^{\circ }}\]
\[\Rightarrow 5x={{90}^{\circ }}...\left( 1 \right)\]
Now, we can write this in the following form:
\[\Rightarrow \cos 3x=\cos \left( 5x-2x \right)\]
Substituting the equation \[\left( 1 \right)\] in above equation we get:
\[\Rightarrow \cos 3x=\cos \left( {{90}^{\circ }}-2x \right)\]
After this, use the identity that \[\cos 3x=4{{\cos }^{3}}x-3\cos x=\sin 2x\].
\[\Rightarrow 4{{\cos }^{3}}x-3\cos x=\sin 2x\]
\[\Rightarrow 4{{\cos }^{3}}x-3\cos x=2\sin x\cos x\]
As we know that \[\cos x\ne 0\] therefore we get
\[\Rightarrow 4{{\cos }^{2}}x-3=2\sin x\]
Again, apply another trigonometric property of sine and cosine that is \[{{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta \] in the above equation we get:
\[\Rightarrow 4\left( 1-{{\sin }^{2}}x \right)-3=2\sin x\]
After simplifying it further we get:
\[\Rightarrow 4{{\sin }^{2}}x+2\sin x-1=0\]
Clearly you can see above equation is a quadratic equation, to solve this and find the value of \[\sin x\], we’ll use the formula \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] we get:
\[\Rightarrow \sin x=\dfrac{-2+\sqrt{{{2}^{2}}-4\cdot 4\cdot \left( -1 \right)}}{2\cdot 4}\]
\[\Rightarrow \sin x=\dfrac{-2+\sqrt{20}}{2\cdot 4}\]
\[\Rightarrow \sin x=\dfrac{-2+2\sqrt{5}}{2\cdot 4}\]
After simplifying it further we get:
\[\Rightarrow \sin x=\dfrac{\sqrt{5}-1}{4}\]
As we took \[x={{18}^{\circ }}\] initially therefore we get:
\[\Rightarrow \sin {{18}^{\circ }}=\dfrac{\sqrt{5}-1}{4}...\left( 2 \right)\]
Which is equal to the RHS.
Therefore, \[\sin {{78}^{\circ }}+\cos {{132}^{\circ }}=\dfrac{\left( \sqrt{5}-1 \right)}{4}\]. Hence Proved.
Note:
There’s an alternative way to solve this question, which is as follows:
Consider the Left-Hand-Side of the equation that is:
LHS \[=\sin {{78}^{\circ }}+\cos {{132}^{\circ }}\]
We can write \[{{132}^{\circ }}={{90}^{\circ }}+{{42}^{\circ }}\], substituting this angle of sine in the above equation we get:
\[\Rightarrow \sin {{78}^{\circ }}+\cos \left( {{90}^{\circ }}+{{42}^{\circ }} \right)\]
Apply the trigonometric property of sine and cosine that is \[\cos \left( {{90}^{\circ }}+\theta \right)=-\sin \theta \] in the above equation we get:
\[\Rightarrow \sin {{78}^{\circ }}-\sin {{42}^{\circ }}\]
Again, apply another trigonometric property of sine and cosine that is \[\sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)\] in the above equation we get:
\[\Rightarrow 2\cos \left( \dfrac{{{78}^{\circ }}+{{42}^{\circ }}}{2} \right)\sin \left( \dfrac{78-42}{2} \right)\]
\[\Rightarrow 2\cos \left( {{60}^{\circ }} \right)\sin \left( {{18}^{\circ }} \right)\]
From equation \[\left( 2 \right)\] we get:
\[\Rightarrow 2\cdot \dfrac{1}{2}\cdot \dfrac{\sqrt{5}-1}{4}\]
\[\Rightarrow \dfrac{\sqrt{5}-1}{4}=\]RHS
Complete step by step solution:
Given equation which needs to be proves is as follows:
\[\sin {{78}^{\circ }}+\cos {{132}^{\circ }}=\dfrac{\left( \sqrt{5}-1 \right)}{4}\]
Consider the Left-Hand-Side of the equation and solve it further:
LHS \[=\sin {{78}^{\circ }}+\cos {{132}^{\circ }}\]
We can write \[{{78}^{\circ }}={{90}^{\circ }}-{{12}^{\circ }}\], substituting this angle of sine in the above equation we get:
\[\Rightarrow \sin \left( {{90}^{\circ }}-{{12}^{\circ }} \right)+\cos {{132}^{\circ }}\]
Apply the trigonometric property of sine and cosine that is \[\sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta \]in the above equation we get:
\[\Rightarrow \cos {{12}^{\circ }}+\cos {{132}^{\circ }}\]
Again, apply another trigonometric property of sine and cosine that is \[\cos A-\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\] in the above equation we get:
\[\Rightarrow 2\cos {{72}^{\circ }}\cos {{60}^{\circ }}\]
We can write \[{{72}^{\circ }}={{90}^{\circ }}-{{18}^{\circ }}\], substituting this angle of sine in the above equation we get:
\[\Rightarrow 2\cos ({{90}^{\circ }}-{{18}^{\circ }})\cdot \dfrac{1}{2}\]
Apply the trigonometric property of sine and cosine that is \[\cos \left( {{90}^{\circ }}-\theta \right)=\sin \theta \]in the above equation we get:
\[\Rightarrow \sin {{18}^{\circ }}\]
To find the value of \[\sin {{18}^{\circ }}\]. We will consider the following:
Let \[x={{18}^{\circ }}\]
\[\Rightarrow 5x={{90}^{\circ }}...\left( 1 \right)\]
Now, we can write this in the following form:
\[\Rightarrow \cos 3x=\cos \left( 5x-2x \right)\]
Substituting the equation \[\left( 1 \right)\] in above equation we get:
\[\Rightarrow \cos 3x=\cos \left( {{90}^{\circ }}-2x \right)\]
After this, use the identity that \[\cos 3x=4{{\cos }^{3}}x-3\cos x=\sin 2x\].
\[\Rightarrow 4{{\cos }^{3}}x-3\cos x=\sin 2x\]
\[\Rightarrow 4{{\cos }^{3}}x-3\cos x=2\sin x\cos x\]
As we know that \[\cos x\ne 0\] therefore we get
\[\Rightarrow 4{{\cos }^{2}}x-3=2\sin x\]
Again, apply another trigonometric property of sine and cosine that is \[{{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta \] in the above equation we get:
\[\Rightarrow 4\left( 1-{{\sin }^{2}}x \right)-3=2\sin x\]
After simplifying it further we get:
\[\Rightarrow 4{{\sin }^{2}}x+2\sin x-1=0\]
Clearly you can see above equation is a quadratic equation, to solve this and find the value of \[\sin x\], we’ll use the formula \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] we get:
\[\Rightarrow \sin x=\dfrac{-2+\sqrt{{{2}^{2}}-4\cdot 4\cdot \left( -1 \right)}}{2\cdot 4}\]
\[\Rightarrow \sin x=\dfrac{-2+\sqrt{20}}{2\cdot 4}\]
\[\Rightarrow \sin x=\dfrac{-2+2\sqrt{5}}{2\cdot 4}\]
After simplifying it further we get:
\[\Rightarrow \sin x=\dfrac{\sqrt{5}-1}{4}\]
As we took \[x={{18}^{\circ }}\] initially therefore we get:
\[\Rightarrow \sin {{18}^{\circ }}=\dfrac{\sqrt{5}-1}{4}...\left( 2 \right)\]
Which is equal to the RHS.
Therefore, \[\sin {{78}^{\circ }}+\cos {{132}^{\circ }}=\dfrac{\left( \sqrt{5}-1 \right)}{4}\]. Hence Proved.
Note:
There’s an alternative way to solve this question, which is as follows:
Consider the Left-Hand-Side of the equation that is:
LHS \[=\sin {{78}^{\circ }}+\cos {{132}^{\circ }}\]
We can write \[{{132}^{\circ }}={{90}^{\circ }}+{{42}^{\circ }}\], substituting this angle of sine in the above equation we get:
\[\Rightarrow \sin {{78}^{\circ }}+\cos \left( {{90}^{\circ }}+{{42}^{\circ }} \right)\]
Apply the trigonometric property of sine and cosine that is \[\cos \left( {{90}^{\circ }}+\theta \right)=-\sin \theta \] in the above equation we get:
\[\Rightarrow \sin {{78}^{\circ }}-\sin {{42}^{\circ }}\]
Again, apply another trigonometric property of sine and cosine that is \[\sin A-\sin B=2\cos \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)\] in the above equation we get:
\[\Rightarrow 2\cos \left( \dfrac{{{78}^{\circ }}+{{42}^{\circ }}}{2} \right)\sin \left( \dfrac{78-42}{2} \right)\]
\[\Rightarrow 2\cos \left( {{60}^{\circ }} \right)\sin \left( {{18}^{\circ }} \right)\]
From equation \[\left( 2 \right)\] we get:
\[\Rightarrow 2\cdot \dfrac{1}{2}\cdot \dfrac{\sqrt{5}-1}{4}\]
\[\Rightarrow \dfrac{\sqrt{5}-1}{4}=\]RHS
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

