Cards numbered from $11$ to $60$ are kept in a box, if a card is drawn at random from the box, find the probability that the number on the card drawn is
$\left( i \right)$ an odd number
$\left( ii \right)$ a perfect square
$\left( iii \right)$ divisible by $5$
$\left( iv \right)$ a prime number less than $20$
Answer
Verified
507.6k+ views
Hint: In each part, the number of favourable outcomes can be calculated manually. There is no need of applying the concept of permutation and combination.
Before proceeding with the question, we must know the definition of the probability. The probability of an event $X$ is defined as the ratio of the number of outcomes favourable to event $X$ and the total number of possible outcomes in the sample space. Mathematically,’
$P\left( X \right)=\dfrac{n\left( X \right)}{n\left( S \right)}...............\left( 1 \right)$
In this question, we have cards numbered from $11$ to $60$. So, the sample space $S$ is,
$S=\left\{ 11,12,13,14,................,58,59,60 \right\}$
So, total number of possible outcomes $n\left( S \right)$ which is same for each part in the question and is equal to,
$n\left( S \right)=50..............\left( 2 \right)$
(i) It is given that the card drawn is an odd number i.e. set $X$ is,
$X=\left\{ 11,13,15,.........,53,57,59 \right\}$
So, $n\left( X \right)=25.........\left( 3 \right)$
Substituting $n\left( X \right)=25$ from equation $\left( 3 \right)$ and $n\left( S \right)=50$ from equation $\left( 2 \right)$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& P\left( X \right)=\dfrac{25}{50} \\
& \Rightarrow P\left( X \right)=\dfrac{1}{2} \\
\end{align}$
(ii) It is given that the card drawn is a perfect square number i.e. set $X$ is,
$X=\left\{ 16,25,36,49 \right\}$
So, $n\left( X \right)=4.........\left( 4 \right)$
Substituting $n\left( X \right)=4$ from equation $\left( 4 \right)$ and $n\left( S \right)=50$ from equation $\left( 2 \right)$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& P\left( X \right)=\dfrac{4}{50} \\
& \Rightarrow P\left( X \right)=\dfrac{2}{25} \\
\end{align}$
(iii) It is given that the card drawn is a number which is divisible by $5$ i.e. set $X$ is,
$X=\left\{ 15,20,25,30,35,40,45,50,55,60 \right\}$
So, $n\left( X \right)=10.........\left( 5 \right)$
Substituting $n\left( X \right)=10$ from equation $\left( 5 \right)$ and $n\left( S \right)=50$ from equation $\left( 2 \right)$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& P\left( X \right)=\dfrac{10}{50} \\
& \Rightarrow P\left( X \right)=\dfrac{1}{5} \\
\end{align}$
(iv) It is given that the card drawn is a prime number less than $20$ i.e. set $X$ is,
$X=\left\{ 11,13,17,19 \right\}$
So, $n\left( X \right)=4.........\left( 6 \right)$
Substituting $n\left( X \right)=4$ from equation $\left( 6 \right)$ and $n\left( S \right)=50$ from equation $\left( 2 \right)$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& P\left( X \right)=\dfrac{4}{50} \\
& \Rightarrow P\left( X \right)=\dfrac{2}{25} \\
\end{align}$
Hence, the answer of $\left( i \right)$ is $\dfrac{1}{2}$, $\left( ii \right)$ is $\dfrac{2}{25}$, $\left( iii \right)$ is $\dfrac{1}{5}$, $\left( iv \right)$ is $\dfrac{2}{25}$.
Note: There is a possibility of committing mistakes while calculating the number of favourable outcomes. Since we are calculating the number of favourable outcomes by finding out the set $X$, there is a possibility that one may find out the wrong number.
Before proceeding with the question, we must know the definition of the probability. The probability of an event $X$ is defined as the ratio of the number of outcomes favourable to event $X$ and the total number of possible outcomes in the sample space. Mathematically,’
$P\left( X \right)=\dfrac{n\left( X \right)}{n\left( S \right)}...............\left( 1 \right)$
In this question, we have cards numbered from $11$ to $60$. So, the sample space $S$ is,
$S=\left\{ 11,12,13,14,................,58,59,60 \right\}$
So, total number of possible outcomes $n\left( S \right)$ which is same for each part in the question and is equal to,
$n\left( S \right)=50..............\left( 2 \right)$
(i) It is given that the card drawn is an odd number i.e. set $X$ is,
$X=\left\{ 11,13,15,.........,53,57,59 \right\}$
So, $n\left( X \right)=25.........\left( 3 \right)$
Substituting $n\left( X \right)=25$ from equation $\left( 3 \right)$ and $n\left( S \right)=50$ from equation $\left( 2 \right)$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& P\left( X \right)=\dfrac{25}{50} \\
& \Rightarrow P\left( X \right)=\dfrac{1}{2} \\
\end{align}$
(ii) It is given that the card drawn is a perfect square number i.e. set $X$ is,
$X=\left\{ 16,25,36,49 \right\}$
So, $n\left( X \right)=4.........\left( 4 \right)$
Substituting $n\left( X \right)=4$ from equation $\left( 4 \right)$ and $n\left( S \right)=50$ from equation $\left( 2 \right)$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& P\left( X \right)=\dfrac{4}{50} \\
& \Rightarrow P\left( X \right)=\dfrac{2}{25} \\
\end{align}$
(iii) It is given that the card drawn is a number which is divisible by $5$ i.e. set $X$ is,
$X=\left\{ 15,20,25,30,35,40,45,50,55,60 \right\}$
So, $n\left( X \right)=10.........\left( 5 \right)$
Substituting $n\left( X \right)=10$ from equation $\left( 5 \right)$ and $n\left( S \right)=50$ from equation $\left( 2 \right)$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& P\left( X \right)=\dfrac{10}{50} \\
& \Rightarrow P\left( X \right)=\dfrac{1}{5} \\
\end{align}$
(iv) It is given that the card drawn is a prime number less than $20$ i.e. set $X$ is,
$X=\left\{ 11,13,17,19 \right\}$
So, $n\left( X \right)=4.........\left( 6 \right)$
Substituting $n\left( X \right)=4$ from equation $\left( 6 \right)$ and $n\left( S \right)=50$ from equation $\left( 2 \right)$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& P\left( X \right)=\dfrac{4}{50} \\
& \Rightarrow P\left( X \right)=\dfrac{2}{25} \\
\end{align}$
Hence, the answer of $\left( i \right)$ is $\dfrac{1}{2}$, $\left( ii \right)$ is $\dfrac{2}{25}$, $\left( iii \right)$ is $\dfrac{1}{5}$, $\left( iv \right)$ is $\dfrac{2}{25}$.
Note: There is a possibility of committing mistakes while calculating the number of favourable outcomes. Since we are calculating the number of favourable outcomes by finding out the set $X$, there is a possibility that one may find out the wrong number.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Chemistry: Engaging Questions & Answers for Success
Master Class 11 Biology: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE