Answer
Verified
433.2k+ views
Hint:
Here we will use the basic concept of conversion of the exponential to the logarithmic form. In order to change from exponential form to logarithmic form, we need to identify the base of the exponential equation and move the base to the other side of the equal sign. Then add the word log to the expression formed.
Complete step by step solution:
We know that the exponential form is \[{a^x} = b\] and logarithmic form is \[x = {\log _a}b\].
Now we will apply this to all the options.
1) Given exponential form is \[{3^4} = 81\]
Now by using the basic concept of the conversion of the exponential into logarithmic function, we get
Logarithmic form is \[{\log _3}81 = 4\].
2) Given exponential form is \[{6^{ - 4}} = \dfrac{1}{{1296}}\]
Now by using the basic concept of the conversion of the exponential into logarithmic function, we get
Logarithmic form is \[{\log _6}\left( {\dfrac{1}{{1296}}} \right) = - 4\].
3) Given exponential form is \[{\left( {\dfrac{1}{{81}}} \right)^{\dfrac{3}{4}}} = \dfrac{1}{{27}}\]
Now by using the basic concept of the conversion of the exponential into logarithmic function, we get
Logarithmic form is \[{\log _{\dfrac{1}{{81}}}}\left( {\dfrac{1}{{27}}} \right) = \dfrac{3}{4}\].
4) Given exponential form is \[{\left( {216} \right)^{\dfrac{1}{3}}} = 6\]
Now by using the basic concept of the conversion of the exponential into logarithmic function, we get
Logarithmic form is \[{\log _{216}}6 = \dfrac{1}{3}\].
5) Given exponential form is \[{\left( {13} \right)^{ - 1}} = \dfrac{1}{{13}}\]
Now by using the basic concept of the conversion of the exponential into logarithmic function, we get
Logarithmic form is \[{\log _{13}}\left( {\dfrac{1}{{13}}} \right) = - 1\].
Note:
We should note that the value inside the log function should never be zero or negative; it should always be greater than zero. We need to remember that the value of the \[\log 10\] is equal to 1. The exponential function is a constant which is raised to some power. An exponential function is the inverse of the logarithmic function.
Some of the basic properties of logarithm is listed below:
\[\begin{array}{l}\log a + \log b = \log ab\\\log {a^b} = b\log a\\\log a - \log b = \log \dfrac{a}{b}\\{\log _a}b = \dfrac{{\log b}}{{\log a}}\end{array}\]
Here we will use the basic concept of conversion of the exponential to the logarithmic form. In order to change from exponential form to logarithmic form, we need to identify the base of the exponential equation and move the base to the other side of the equal sign. Then add the word log to the expression formed.
Complete step by step solution:
We know that the exponential form is \[{a^x} = b\] and logarithmic form is \[x = {\log _a}b\].
Now we will apply this to all the options.
1) Given exponential form is \[{3^4} = 81\]
Now by using the basic concept of the conversion of the exponential into logarithmic function, we get
Logarithmic form is \[{\log _3}81 = 4\].
2) Given exponential form is \[{6^{ - 4}} = \dfrac{1}{{1296}}\]
Now by using the basic concept of the conversion of the exponential into logarithmic function, we get
Logarithmic form is \[{\log _6}\left( {\dfrac{1}{{1296}}} \right) = - 4\].
3) Given exponential form is \[{\left( {\dfrac{1}{{81}}} \right)^{\dfrac{3}{4}}} = \dfrac{1}{{27}}\]
Now by using the basic concept of the conversion of the exponential into logarithmic function, we get
Logarithmic form is \[{\log _{\dfrac{1}{{81}}}}\left( {\dfrac{1}{{27}}} \right) = \dfrac{3}{4}\].
4) Given exponential form is \[{\left( {216} \right)^{\dfrac{1}{3}}} = 6\]
Now by using the basic concept of the conversion of the exponential into logarithmic function, we get
Logarithmic form is \[{\log _{216}}6 = \dfrac{1}{3}\].
5) Given exponential form is \[{\left( {13} \right)^{ - 1}} = \dfrac{1}{{13}}\]
Now by using the basic concept of the conversion of the exponential into logarithmic function, we get
Logarithmic form is \[{\log _{13}}\left( {\dfrac{1}{{13}}} \right) = - 1\].
Note:
We should note that the value inside the log function should never be zero or negative; it should always be greater than zero. We need to remember that the value of the \[\log 10\] is equal to 1. The exponential function is a constant which is raised to some power. An exponential function is the inverse of the logarithmic function.
Some of the basic properties of logarithm is listed below:
\[\begin{array}{l}\log a + \log b = \log ab\\\log {a^b} = b\log a\\\log a - \log b = \log \dfrac{a}{b}\\{\log _a}b = \dfrac{{\log b}}{{\log a}}\end{array}\]
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE