How many changes can be rung with a peal of 7 bells, the tenor always being last?
Answer
Verified
507.6k+ views
Hint: All bells in a peal are different and the position of tenor is fixed. Taking these factors into account permutations is carried out.
As we know that,
Number of ways to arrange n things is ${\text{n!}}$.
So, the number of changes that can be rung with a peal of $n$ bells is ${\text{n!}}$.
But here we are given a condition that tenor is always at last.
So, the position of tenor is fixed now.
So, bells left that can still be rearranged are 6 i.e., we can make changes with 6 bells only.
So, the number of changes that can be made with 6 bells is ${\text{6!}}$.
As we know that ${\text{n!}}$ is calculated as,
\[ \Rightarrow {\text{n!}} = n*(n - 1)*(n - 2).*..........*2*1\]
So, \[{\text{6!}} = 6*5*4*3*2*1 = 720\]
\[ \Rightarrow \]Hence, 720 changes can be rung with a peal of 7 bells, the tenor being last.
Note: Whenever we come up with these types of problems then, we have to only find changes for the objects that are not fixed and that will be \[{\text{n!}}\], if n is the number of such objects because if an object is fixed then its position cannot be changed/rearranged.
As we know that,
Number of ways to arrange n things is ${\text{n!}}$.
So, the number of changes that can be rung with a peal of $n$ bells is ${\text{n!}}$.
But here we are given a condition that tenor is always at last.
So, the position of tenor is fixed now.
So, bells left that can still be rearranged are 6 i.e., we can make changes with 6 bells only.
So, the number of changes that can be made with 6 bells is ${\text{6!}}$.
As we know that ${\text{n!}}$ is calculated as,
\[ \Rightarrow {\text{n!}} = n*(n - 1)*(n - 2).*..........*2*1\]
So, \[{\text{6!}} = 6*5*4*3*2*1 = 720\]
\[ \Rightarrow \]Hence, 720 changes can be rung with a peal of 7 bells, the tenor being last.
Note: Whenever we come up with these types of problems then, we have to only find changes for the objects that are not fixed and that will be \[{\text{n!}}\], if n is the number of such objects because if an object is fixed then its position cannot be changed/rearranged.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Physics: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 English: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE