Answer
Verified
492k+ views
Hint – Commutativity property means, $a \odot b = b \odot a$, where $' \odot '$ is a binary operation and associative property is $(a \odot b) \odot r = a \odot (b \odot r)$.
Complete step-by-step answer:
Given that $' \odot '$is a binary operation on Q defined by $a \odot b = {a^2} + {b^2}$ for all $a,b \in Q$.
We know-
Commutative property means, $a \odot b = b \odot a$.
Let’s check the commutative property of given binary operation:
Given, $a \odot b = {a^2} + {b^2}$
$
\Rightarrow a \odot b = {a^2} + {b^2} \\
\Rightarrow b \odot a = {b^2} + {a^2} \\
\Rightarrow a \odot b = b \odot a \\
$
Therefore, the commutative property holds for a given binary operation on ‘Q’.
Now, we know –
Associative property is $(a \odot b) \odot r = a \odot (b \odot r)$.
Let’s check the associative property of given binary operation:
Given, $a \odot b = {a^2} + {b^2}$
$
\Rightarrow (a \odot b) \odot r = ({a^2} + {b^2}) \odot r \\
\Rightarrow (a \odot b) \odot r = {({a^2} + {b^2})^2} + {r^2} - (1) \\
$
Now, $
a \odot (b \odot r) = a \odot ({b^2} + {r^2}) \\
\Rightarrow a \odot (b \odot r) = {a^2} + {({b^2} + {r^2})^2} - (2) \\
$
From equation (1) and (2), we can clearly say that associativity property doesn’t hold for the binary operation on ‘Q’.
Therefore, the given binary operation is commutative but not associative on Q.
Note – Whenever such types of questions appear, then first check for the commutative property of the binary operation given in the question and then check for the associativity property on Q. Proceed step by step to avoid any mistake.
Complete step-by-step answer:
Given that $' \odot '$is a binary operation on Q defined by $a \odot b = {a^2} + {b^2}$ for all $a,b \in Q$.
We know-
Commutative property means, $a \odot b = b \odot a$.
Let’s check the commutative property of given binary operation:
Given, $a \odot b = {a^2} + {b^2}$
$
\Rightarrow a \odot b = {a^2} + {b^2} \\
\Rightarrow b \odot a = {b^2} + {a^2} \\
\Rightarrow a \odot b = b \odot a \\
$
Therefore, the commutative property holds for a given binary operation on ‘Q’.
Now, we know –
Associative property is $(a \odot b) \odot r = a \odot (b \odot r)$.
Let’s check the associative property of given binary operation:
Given, $a \odot b = {a^2} + {b^2}$
$
\Rightarrow (a \odot b) \odot r = ({a^2} + {b^2}) \odot r \\
\Rightarrow (a \odot b) \odot r = {({a^2} + {b^2})^2} + {r^2} - (1) \\
$
Now, $
a \odot (b \odot r) = a \odot ({b^2} + {r^2}) \\
\Rightarrow a \odot (b \odot r) = {a^2} + {({b^2} + {r^2})^2} - (2) \\
$
From equation (1) and (2), we can clearly say that associativity property doesn’t hold for the binary operation on ‘Q’.
Therefore, the given binary operation is commutative but not associative on Q.
Note – Whenever such types of questions appear, then first check for the commutative property of the binary operation given in the question and then check for the associativity property on Q. Proceed step by step to avoid any mistake.
Recently Updated Pages
Select the antonym for the following word from the class 10 english CBSE
Select the antonym for the following word from the class 10 english CBSE
Select the antonym for the following word from the class 10 english CBSE
Select the antonym for the following word from the class 10 english CBSE
Select the antonym for the following word from the class 10 english CBSE
Select the antonym for the following word from the class 10 english CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Chahalgani means ATurkish noble under Iltutmish BSlaves class 10 social science CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
the Gond raja of Garha Katanga assumed the title of class 10 social science CBSE