Answer
Verified
476.7k+ views
Hint: In this particular question first, draw perpendicular lines of unit (i.e. 1) length and then join their end point with O. And will apply Pythagoras Theorem (i.e. \[{\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Perpendicular}}} \right)^2} + {\left( {{\text{Base}}} \right)^2}\] ) to find the length of that segment formed by joining the end point with O. Repeat this process again and again to draw the square root spiral.
Complete step-by-step answer:
So, let us first draw a line segment AB of unit length.
Then draw a line BC that is perpendicular to the line AB and is of unit length.
Now we had to join point A with point C.
Now as we know that \[\angle B = 90^\circ \]. So, we can apply Pythagoras theorem in triangle ABC.
So, according to Pythagoras theorem \[{\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Base}}} \right)^2} + {\left( {{\text{Perpendicular}}} \right)^2}\]
So, in triangle ABC \[{\left( {{\text{AC}}} \right)^2} = {\left( {{\text{AB}}} \right)^2} + {\left( {{\text{BC}}} \right)^2}\]
\[ \Rightarrow AC = \sqrt {{{\left( {{\text{AB}}} \right)}^2} + {{\left( {{\text{BC}}} \right)}^2}} = \sqrt {1 + 1} = \sqrt 2 \]
Now draw a line CD that is perpendicular to the line CA and is of unit length.
Join point D with point A.
Now again applying Pythagoras theorem in triangle ACD.
\[ \Rightarrow AD = \sqrt {{{\left( {{\text{AC}}} \right)}^2} + {{\left( {{\text{CD}}} \right)}^2}} = \sqrt {2 + 1} = \sqrt 3 \]
Similarly, proceeding further each time we will get a line having length equal to the square root of a next natural number.
So, the square root spiral will be as follows \[\sqrt 2 ,\sqrt 3 ,\sqrt 4 ,\sqrt 5 ,.......\]
Note:Whenever we face such types of questions the key concept we have to remember is that each time the length of the new line formed is the square root of the next natural number than the previous one because the new line formed is the hypotenuse of the new triangle. And the base the previous line while the perpendicular is always of unit length. So, by Pythagoras theorem \[{\left( {{\text{Length of new line}}} \right)^2} = {\left( {{\text{Length of the previous line}}} \right)^2} + {\left( {{\text{Perpendicular}}} \right)^2}\]. So, if the length of the previous line is the square root of natural number x. Then, \[{\left( {{\text{Length of new line}}} \right)^2} = {\left( {\sqrt x } \right)^2} + {\left( {\text{1}} \right)^2}\]. So, \[{\text{Length of new line}} = \sqrt {x + 1} \]. Hence we will get the spiral of the square root of numbers.
Complete step-by-step answer:
So, let us first draw a line segment AB of unit length.
Then draw a line BC that is perpendicular to the line AB and is of unit length.
Now we had to join point A with point C.
Now as we know that \[\angle B = 90^\circ \]. So, we can apply Pythagoras theorem in triangle ABC.
So, according to Pythagoras theorem \[{\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Base}}} \right)^2} + {\left( {{\text{Perpendicular}}} \right)^2}\]
So, in triangle ABC \[{\left( {{\text{AC}}} \right)^2} = {\left( {{\text{AB}}} \right)^2} + {\left( {{\text{BC}}} \right)^2}\]
\[ \Rightarrow AC = \sqrt {{{\left( {{\text{AB}}} \right)}^2} + {{\left( {{\text{BC}}} \right)}^2}} = \sqrt {1 + 1} = \sqrt 2 \]
Now draw a line CD that is perpendicular to the line CA and is of unit length.
Join point D with point A.
Now again applying Pythagoras theorem in triangle ACD.
\[ \Rightarrow AD = \sqrt {{{\left( {{\text{AC}}} \right)}^2} + {{\left( {{\text{CD}}} \right)}^2}} = \sqrt {2 + 1} = \sqrt 3 \]
Similarly, proceeding further each time we will get a line having length equal to the square root of a next natural number.
So, the square root spiral will be as follows \[\sqrt 2 ,\sqrt 3 ,\sqrt 4 ,\sqrt 5 ,.......\]
Note:Whenever we face such types of questions the key concept we have to remember is that each time the length of the new line formed is the square root of the next natural number than the previous one because the new line formed is the hypotenuse of the new triangle. And the base the previous line while the perpendicular is always of unit length. So, by Pythagoras theorem \[{\left( {{\text{Length of new line}}} \right)^2} = {\left( {{\text{Length of the previous line}}} \right)^2} + {\left( {{\text{Perpendicular}}} \right)^2}\]. So, if the length of the previous line is the square root of natural number x. Then, \[{\left( {{\text{Length of new line}}} \right)^2} = {\left( {\sqrt x } \right)^2} + {\left( {\text{1}} \right)^2}\]. So, \[{\text{Length of new line}} = \sqrt {x + 1} \]. Hence we will get the spiral of the square root of numbers.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Choose the word opposite in meaning to the given word class 8 english CBSE
Choose the word opposite in meaning to the given word class 8 english CBSE
Choose the word opposite in meaning to the given word class 8 english CBSE
Choose the word opposite in meaning to the given word class 8 english CBSE
Trending doubts
State the differences between manure and fertilize class 8 biology CBSE
List some examples of Rabi and Kharif crops class 8 biology CBSE
What are the 12 elements of nature class 8 chemistry CBSE
Find the perfect square numbers between 30 and 40 class 8 maths CBSE
What is the difference between rai and mustard see class 8 biology CBSE
Write the following in HinduArabic numerals XXIX class 8 maths CBSE