Coefficient of linear expansion of material of resistor is $\alpha $ .Its temperature coefficient of resistivity and resistance are ${\alpha _\rho }$ and ${\alpha _R}$ respectively, then correct relation is
A. ${\alpha _R} = {\alpha _\rho } - \alpha $
B. ${\alpha _R} = {\alpha _\rho } + \alpha $
C. ${\alpha _R} = {\alpha _\rho } + 3\alpha $
D. ${\alpha _R} = {\alpha _\rho } - 3\alpha $
Answer
Verified
380.7k+ views
Hint:First, we will assume the complete system at ${T_0}$ temperature. And then increase the temperature with $\Delta T$ and simplify the obtained equation and with the help of binomial expansion we will reduce the term and hence we will get the required solution.
Formula used:
$R = \dfrac{{\rho l}}{A}$
Where, $R$ is the resistance, $\rho $ is the resistivity of the material, $l$ is the length of the conductor and $A$ is the area of the cross section.
Complete step by step answer:
We know that $R = \dfrac{{\rho l}}{A}$. Let’s assume at ${T_0}$ temperature, Resistance is ${R_0}$ ,Resistivity is ${\rho _0}$, ${l_0}$ is the length and ${A_0}$ is the area. So, at ${T_0}$ temperature the value of resistance will be,
${R_0} = \dfrac{{{\rho _0}{l_0}}}{{{A_0}}}$
Now let’s increase the temperature with $\Delta T$ then the value will change,i.e.,
${R_0} = {R_0}(1 + {\alpha _R}\Delta T)$
\[\Rightarrow {\rho _0} = {\rho _0}(1 + {\alpha _\rho }\Delta T)\]
$\Rightarrow {l_0} = {l_0}(1 + \alpha \Delta T)$
$\Rightarrow {A_0} = {A_0}(1 + 2\alpha \Delta T)$
Not putting together in formula, we get,
${R_0}(1 + {\alpha _R}\Delta T) = {\rho _0}(1 + {\alpha _\rho }\Delta T)\dfrac{{{l_0}(1 + \alpha \Delta T)}}{{{A_0}(1 + 2\alpha \Delta T)}}$
Now, simplifying,
\[{R_0}(1 + {\alpha _R}\Delta T) = {\rho _0}\dfrac{{{l_0}}}{{{A_0}}} \times \dfrac{{(1 + {\alpha _\rho }\Delta T)(1 + \alpha \Delta T)}}{{(1 + 2\alpha \Delta T)}} \\
\Rightarrow {R_0}(1 + {\alpha _R}\Delta T) = {R_0} \times \dfrac{{(1 + {\alpha _\rho }\Delta T)(1 + \alpha \Delta T)}}{{(1 + 2\alpha \Delta T)}} \\
\Rightarrow (1 + {\alpha _R}\Delta T) = (1 + {\alpha _\rho }\Delta T)(1 + \alpha \Delta T){(1 + 2\alpha \Delta T)^{ - 1}} \\ \]
Now, reducing with the help of binomial expansion, we will get
\[(1 + {\alpha _R}\Delta T) = (1 + {\alpha _\rho }\Delta T)(1 + \alpha \Delta T){(1 + 2\alpha \Delta T)^{ - 1}} \\
\Rightarrow (1 + {\alpha _R}\Delta T) = (1 + {\alpha _\rho }\Delta T)(1 + \alpha \Delta T)(1 - 2\alpha \Delta T) \\ \]
Here we have neglected the last term as the multiplication of $\alpha $ and $ - 2\alpha $ is very small.
\[\Rightarrow (1 + {\alpha _R}\Delta T) = (1 + {\alpha _\rho }\Delta T)[1 + \alpha \Delta T - 2\alpha \Delta T] \\
\Rightarrow (1 + {\alpha _R}\Delta T) = (1 + {\alpha _\rho }\Delta T)(1 - \alpha \Delta T) \\
\Rightarrow 1 + {\alpha _R}\Delta T = 1 - \alpha \Delta T + {\alpha _\rho }\Delta T - {\alpha _\rho }\alpha \Delta T \\ \]
Here we have neglected the last term as the multiplication of \[{\alpha _\rho }\alpha \] is very small.
\[\Rightarrow 1 + {\alpha _R}\Delta T = 1 - \alpha \Delta T + {\alpha _\rho }\Delta T \\
\therefore {\alpha _R} = {\alpha _\rho } - \alpha \]
So, the correct relation is \[{\alpha _R} = {\alpha _\rho } - \alpha \] .
Hence the correct option is A.
Note:If the conductor does not expand, then the value of coefficient of resistance is same as the coefficient of resistivity. But as the area of the cross section increases with temperature, the coefficient decreases by $\alpha $.
Formula used:
$R = \dfrac{{\rho l}}{A}$
Where, $R$ is the resistance, $\rho $ is the resistivity of the material, $l$ is the length of the conductor and $A$ is the area of the cross section.
Complete step by step answer:
We know that $R = \dfrac{{\rho l}}{A}$. Let’s assume at ${T_0}$ temperature, Resistance is ${R_0}$ ,Resistivity is ${\rho _0}$, ${l_0}$ is the length and ${A_0}$ is the area. So, at ${T_0}$ temperature the value of resistance will be,
${R_0} = \dfrac{{{\rho _0}{l_0}}}{{{A_0}}}$
Now let’s increase the temperature with $\Delta T$ then the value will change,i.e.,
${R_0} = {R_0}(1 + {\alpha _R}\Delta T)$
\[\Rightarrow {\rho _0} = {\rho _0}(1 + {\alpha _\rho }\Delta T)\]
$\Rightarrow {l_0} = {l_0}(1 + \alpha \Delta T)$
$\Rightarrow {A_0} = {A_0}(1 + 2\alpha \Delta T)$
Not putting together in formula, we get,
${R_0}(1 + {\alpha _R}\Delta T) = {\rho _0}(1 + {\alpha _\rho }\Delta T)\dfrac{{{l_0}(1 + \alpha \Delta T)}}{{{A_0}(1 + 2\alpha \Delta T)}}$
Now, simplifying,
\[{R_0}(1 + {\alpha _R}\Delta T) = {\rho _0}\dfrac{{{l_0}}}{{{A_0}}} \times \dfrac{{(1 + {\alpha _\rho }\Delta T)(1 + \alpha \Delta T)}}{{(1 + 2\alpha \Delta T)}} \\
\Rightarrow {R_0}(1 + {\alpha _R}\Delta T) = {R_0} \times \dfrac{{(1 + {\alpha _\rho }\Delta T)(1 + \alpha \Delta T)}}{{(1 + 2\alpha \Delta T)}} \\
\Rightarrow (1 + {\alpha _R}\Delta T) = (1 + {\alpha _\rho }\Delta T)(1 + \alpha \Delta T){(1 + 2\alpha \Delta T)^{ - 1}} \\ \]
Now, reducing with the help of binomial expansion, we will get
\[(1 + {\alpha _R}\Delta T) = (1 + {\alpha _\rho }\Delta T)(1 + \alpha \Delta T){(1 + 2\alpha \Delta T)^{ - 1}} \\
\Rightarrow (1 + {\alpha _R}\Delta T) = (1 + {\alpha _\rho }\Delta T)(1 + \alpha \Delta T)(1 - 2\alpha \Delta T) \\ \]
Here we have neglected the last term as the multiplication of $\alpha $ and $ - 2\alpha $ is very small.
\[\Rightarrow (1 + {\alpha _R}\Delta T) = (1 + {\alpha _\rho }\Delta T)[1 + \alpha \Delta T - 2\alpha \Delta T] \\
\Rightarrow (1 + {\alpha _R}\Delta T) = (1 + {\alpha _\rho }\Delta T)(1 - \alpha \Delta T) \\
\Rightarrow 1 + {\alpha _R}\Delta T = 1 - \alpha \Delta T + {\alpha _\rho }\Delta T - {\alpha _\rho }\alpha \Delta T \\ \]
Here we have neglected the last term as the multiplication of \[{\alpha _\rho }\alpha \] is very small.
\[\Rightarrow 1 + {\alpha _R}\Delta T = 1 - \alpha \Delta T + {\alpha _\rho }\Delta T \\
\therefore {\alpha _R} = {\alpha _\rho } - \alpha \]
So, the correct relation is \[{\alpha _R} = {\alpha _\rho } - \alpha \] .
Hence the correct option is A.
Note:If the conductor does not expand, then the value of coefficient of resistance is same as the coefficient of resistivity. But as the area of the cross section increases with temperature, the coefficient decreases by $\alpha $.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE