Answer
Verified
429.9k+ views
Hint: This is a linear expression in one variable and all the terms have one variable $m$. First we have to solve the brackets. We know that the combination of two same signs will give positive and the combination of two opposite signs will give us negative sign while opening brackets. After opening the brackets, combine the positive terms and negative terms separately and find its value.
Complete step by step answer:
According to the question, we have to show the method to combine like terms in the given algebraic expression.
The algebraic expression is $6m - 5m + \left( { - 8m} \right) + \left( { - m} \right) + \left( { - 10m} \right) + \left( { - 5m} \right)$.
Let the value of this expression is $x$. Then we have:
$ \Rightarrow x = 6m - 5m + \left( { - 8m} \right) + \left( { - m} \right) + \left( { - 10m} \right) + \left( { - 5m} \right)$
First we will open the brackets. We know that the combination of two same signs will give positive and the combination of two opposite signs will give us negative sign while opening brackets. Applying this rule for the above expression, we’ll get:
$ \Rightarrow x = 6m - 5m - 8m - m - 10m - 5m$
As we can see that only the first term is positive and all the other terms are negative. Combining positive terms together and negative terms together and solving them separately, we‘ll get:
$
\Rightarrow x = 6m - \left( {5m + 8m + m + 10m + 5m} \right) \\
\Rightarrow x = 6m - 29m \\
\Rightarrow x = - 23m \\
$
Therefore the final value of the expression $6m - 5m + \left( { - 8m} \right) + \left( { - m} \right) + \left( { - 10m} \right) + \left( { - 5m} \right)$ is $ - 23m$. This is the method how we combine the like terms and find the values of such expressions.
Note: If in an algebraic expression:
(1) If the combination of variables in two terms is different then we can’t add or subtract their coefficient to bring it in one term. For example, $2x + 3y$ is the simplest form of this expression and we can’t add the coefficients of the two terms because they have different variables.
(2) If the variables are same in both the terms but the degree is different then also we can’t add or subtract their coefficients. For example, $4{x^2} + 7x$ is the simplest form of this expression and we can’t add the coefficients of the two terms because in the first term, the degree of variable is 2 but it 1 in the second term.
Complete step by step answer:
According to the question, we have to show the method to combine like terms in the given algebraic expression.
The algebraic expression is $6m - 5m + \left( { - 8m} \right) + \left( { - m} \right) + \left( { - 10m} \right) + \left( { - 5m} \right)$.
Let the value of this expression is $x$. Then we have:
$ \Rightarrow x = 6m - 5m + \left( { - 8m} \right) + \left( { - m} \right) + \left( { - 10m} \right) + \left( { - 5m} \right)$
First we will open the brackets. We know that the combination of two same signs will give positive and the combination of two opposite signs will give us negative sign while opening brackets. Applying this rule for the above expression, we’ll get:
$ \Rightarrow x = 6m - 5m - 8m - m - 10m - 5m$
As we can see that only the first term is positive and all the other terms are negative. Combining positive terms together and negative terms together and solving them separately, we‘ll get:
$
\Rightarrow x = 6m - \left( {5m + 8m + m + 10m + 5m} \right) \\
\Rightarrow x = 6m - 29m \\
\Rightarrow x = - 23m \\
$
Therefore the final value of the expression $6m - 5m + \left( { - 8m} \right) + \left( { - m} \right) + \left( { - 10m} \right) + \left( { - 5m} \right)$ is $ - 23m$. This is the method how we combine the like terms and find the values of such expressions.
Note: If in an algebraic expression:
(1) If the combination of variables in two terms is different then we can’t add or subtract their coefficient to bring it in one term. For example, $2x + 3y$ is the simplest form of this expression and we can’t add the coefficients of the two terms because they have different variables.
(2) If the variables are same in both the terms but the degree is different then also we can’t add or subtract their coefficients. For example, $4{x^2} + 7x$ is the simplest form of this expression and we can’t add the coefficients of the two terms because in the first term, the degree of variable is 2 but it 1 in the second term.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE