
How to complete the identity $\dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} =$ ?
A. $\tan \alpha \tan \beta + \cot \beta$
B. $1 + \tan \alpha \tan \beta$
C. $1 + \cot \alpha \tan \beta$
D. $1 + \cot \alpha \cot \beta$
Answer
553.8k+ views
Hint: To find the complete identity of $\dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }}$ at first, we will use the formula $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angle in the numerator. Then we will divide the numerator with the denominator and finally get the answer.
Formula Used:
$\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angles.
$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ .
Complete step by step answer:
$\dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }}$
We know that $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta + \sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} = 1 + \dfrac{{\sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} = 1 + \tan \alpha \tan \beta$
The correct answer is $1 + \tan \alpha \tan \beta$ .
So, the correct answer is Option B.
Note: For the trigonometric derivation, we will try to use the basic formulas in trigonometry to simplify any identity. Here we used the formula $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angles. After using this formula the identity is easily simplified.
Similar examples:
How to complete the identity $\dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} =$ ?
We have given;
$\dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }}$
We know that $\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta - \sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} = 1 - \dfrac{{\sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} = 1 - \tan \alpha \tan \beta$
How to complete the identity $\dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} =$ ?
We have given;
$\dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }}$
We know that $\sin \left( {a + b} \right) = \sin a\cos b + \cos a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} = \dfrac{{\sin \alpha \cos \beta + \cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} = 1 + \dfrac{{\cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} = 1 + \cot \alpha \tan \beta$
How to complete the identity $\dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} =$ ?
We have given;
$\dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }}$
We know that $\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} = \dfrac{{\sin \alpha \cos \beta - \cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} = 1 - \dfrac{{\cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} = 1 - \cot \alpha \tan \beta$ .
Formula Used:
$\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angles.
$\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ .
Complete step by step answer:
$\dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }}$
We know that $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta + \sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} = 1 + \dfrac{{\sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\cos (\alpha - \beta )}}{{\cos \alpha \cos \beta }} = 1 + \tan \alpha \tan \beta$
The correct answer is $1 + \tan \alpha \tan \beta$ .
So, the correct answer is Option B.
Note: For the trigonometric derivation, we will try to use the basic formulas in trigonometry to simplify any identity. Here we used the formula $\cos \left( {a - b} \right) = \cos a\cos b + \sin a\sin b$ where $a$ and $b$ are arbitrary angles. After using this formula the identity is easily simplified.
Similar examples:
How to complete the identity $\dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} =$ ?
We have given;
$\dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }}$
We know that $\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} = \dfrac{{\cos \alpha \cos \beta - \sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} = 1 - \dfrac{{\sin \alpha \sin \beta }}{{\cos \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\cos (\alpha + \beta )}}{{\cos \alpha \cos \beta }} = 1 - \tan \alpha \tan \beta$
How to complete the identity $\dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} =$ ?
We have given;
$\dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }}$
We know that $\sin \left( {a + b} \right) = \sin a\cos b + \cos a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} = \dfrac{{\sin \alpha \cos \beta + \cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} = 1 + \dfrac{{\cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\sin (\alpha + \beta )}}{{\sin \alpha \cos \beta }} = 1 + \cot \alpha \tan \beta$
How to complete the identity $\dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} =$ ?
We have given;
$\dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }}$
We know that $\sin \left( {a - b} \right) = \sin a\cos b - \cos a\sin b$ where $a$ and $b$ are arbitrary angles. We will apply this formula in the numerator and get;
$\Rightarrow \dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} = \dfrac{{\sin \alpha \cos \beta - \cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
Dividing the numerator with the denominator we get;
$\Rightarrow \dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} = 1 - \dfrac{{\cos \alpha \sin \beta }}{{\sin \alpha \cos \beta }}$
We know that $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ and $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ . Using this in the above equation we get;
$\Rightarrow \dfrac{{\sin (\alpha - \beta )}}{{\sin \alpha \cos \beta }} = 1 - \cot \alpha \tan \beta$ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

