
What is the condition for a unique solution of a pair of linear equations in two variables?
Answer
619.5k+ views
Hint: In this question first assume any pair of linear equations in two variables and convert them into matrix format so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Let us consider the system of linear equations in two variables be
$
ax + by = c \\
dx + ey = f \\
$
Where (x, y) are the variables and (a, b, c, d, e, f) are the constants.
Now convert this system of equation into matrix format we have,
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
a&b \\
d&e
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
c \\
f
\end{array}} \right]$
In above matrix format determinant (D) = $\left| {\begin{array}{*{20}{c}}
a&b \\
d&e
\end{array}} \right|$
So, the condition of unique solution of a pair of linear equation in two variables is
The value of determinant (D) should not equal zero.
$ \Rightarrow D \ne 0$
Or,
$D = \left| {\begin{array}{*{20}{c}}
a&b \\
d&e
\end{array}} \right| \ne 0$
Expand the determinant we have
$D = \left( {ae - bd} \right) \ne 0$
So, this is the required condition of a unique solution of a pair of linear equations in two variables.
So, this is the required answer.
Note: In such types of questions first let any two linear equations as above then convert it into matrix format as above and calculate the value of determinate so, for unique solution the value of determinant should not equal to zero if zero then the system of equations has either no solution or infinitely many solutions.
Complete step-by-step answer:
Let us consider the system of linear equations in two variables be
$
ax + by = c \\
dx + ey = f \\
$
Where (x, y) are the variables and (a, b, c, d, e, f) are the constants.
Now convert this system of equation into matrix format we have,
$ \Rightarrow \left[ {\begin{array}{*{20}{c}}
a&b \\
d&e
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
c \\
f
\end{array}} \right]$
In above matrix format determinant (D) = $\left| {\begin{array}{*{20}{c}}
a&b \\
d&e
\end{array}} \right|$
So, the condition of unique solution of a pair of linear equation in two variables is
The value of determinant (D) should not equal zero.
$ \Rightarrow D \ne 0$
Or,
$D = \left| {\begin{array}{*{20}{c}}
a&b \\
d&e
\end{array}} \right| \ne 0$
Expand the determinant we have
$D = \left( {ae - bd} \right) \ne 0$
So, this is the required condition of a unique solution of a pair of linear equations in two variables.
So, this is the required answer.
Note: In such types of questions first let any two linear equations as above then convert it into matrix format as above and calculate the value of determinate so, for unique solution the value of determinant should not equal to zero if zero then the system of equations has either no solution or infinitely many solutions.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

