
Consider a body of mass 1.0kg at rest at the origin at time t=0. A force $\overrightarrow F = \alpha t\widehat i + \beta \widehat j$ is applied on the body, where α=1.0N/s and β=1.0N. The torque acting on the body about the origin at time t=1.0s is τ. Which of the following statements is (are) true?
A. $\left| {\vec \tau } \right| = \dfrac{1}{3}N.m$
B. The torque $\vec \tau $is in the direction of unit vector $ + \widehat k$
C. Velocity of the body at t= 1sec is $\overrightarrow v = \dfrac{1}{2}(\widehat i + 2\widehat j)$m/s
D. The magnitude of displacement of the body at t= 1s is $\dfrac{1}{6}m$
Answer
476.7k+ views
Hint: From the vector form of 2nd law of Newton,$\overrightarrow F = m\overrightarrow a = m\dfrac{{d\overrightarrow v }}{{dt}}$ and we know,$\overrightarrow v = \dfrac{{d\overrightarrow r }}{{dt}}$
From the definition of torque,$\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F )$
Where, $\overrightarrow \tau = $torque acting on the body
$\overrightarrow F = $Force acting on the body
$\overrightarrow r = $Displacement of the body
$\overrightarrow v = $Velocity of the body
$m = $Mass of the body
Using these two equations we will come to the solution of the above problem.
Complete step by step answer:
Mass of the body, $m = 1kg$
At $t = 0s,\overrightarrow v = 0,\overrightarrow r = 0$
Also,$\overrightarrow F = \alpha t\widehat i + \beta \widehat j$, $\alpha = 1N/s,\beta = 1N$
So, $\overrightarrow F = t\widehat i + \widehat j$
From Newton’s second law,$\overrightarrow F = m\overrightarrow a = m\dfrac{{d\overrightarrow v }}{{dt}}$
Now, $m\dfrac{{d\overrightarrow v }}{{dt}} = t\widehat i + \widehat j$\[\]
Or, $md\overrightarrow v = (t\widehat i + \widehat j)dt$
Integrating both sides,$m\int\limits_{v = 0}^{v = \overrightarrow v } {d\overrightarrow v = \int\limits_{t = 0}^{t = t} {(t\widehat i + \widehat j)dt} } $
Or, $\overrightarrow v = \dfrac{{{t^2}}}{2}\widehat i + t\widehat j[\because m = 1kg]$
Or,$\dfrac{{d\overrightarrow r }}{{dt}} = \dfrac{{{t^2}}}{2}\widehat i + t\widehat j$
Or,$d\overrightarrow r = (\dfrac{{{t^2}}}{2}\widehat i + t\widehat j)dt$
Integrating both sides, $\int\limits_{r = 0}^{r = \overrightarrow r } {d\overrightarrow r = \int\limits_{t = 0}^{t = t} {\left( {\dfrac{{{t^2}}}{2}\widehat i + t\widehat j} \right)} dt} $
Or, $\overrightarrow r = \dfrac{{{t^3}}}{6}\widehat i + \dfrac{{{t^2}}}{2}\widehat j$
At t= 1sec,
$\overrightarrow r = \dfrac{{{1^3}}}{6}\widehat i + \dfrac{{{1^2}}}{2}\widehat j = \dfrac{1}{6}\widehat i + \dfrac{1}{2}\widehat j$
$\overrightarrow v = \dfrac{{{1^2}}}{2}\widehat i + 1\widehat j = \dfrac{1}{2}\widehat i + 1\widehat j = \dfrac{1}{2}(\widehat i + 2\widehat j)$………………………….(1)
$\overrightarrow F = \widehat i + \widehat j$
$
\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F ) \\
= (\dfrac{1}{6}\widehat i + \dfrac{1}{2}\widehat j) \times (\widehat i + \widehat j) \\
= (\dfrac{1}{6} - \dfrac{1}{2})\widehat k \\
= - \dfrac{1}{3}\widehat k................................(2) \\
$
$\left| {\overrightarrow r } \right| = \sqrt {{{(\dfrac{1}{6})}^2} + {{(\dfrac{1}{2})}^2}} = \dfrac{{\sqrt {10} }}{6}$……………………………………(3)
Now, from (2) it is clear that at t= 1sec, $|\overrightarrow \tau | = \dfrac{1}{3}$.
So, option (A) is correct.
Direction of $\overrightarrow \tau $is towards unit vector $ - \widehat k$from (2)
So, option (B) is incorrect.
From (1), Velocity of the body at t= 1sec is $\overrightarrow v = \dfrac{1}{2}(\widehat i + 2\widehat j)$m/s
So, option (C) is correct.
From (3), the magnitude of displacement of the body at t= 1s is $\dfrac{{\sqrt {10} }}{6}m$
So, option (D) is incorrect.
So, the correct answers are “Options A and C”.
Note:
It is to be noted that, $\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F )$. $(\overrightarrow r \times \overrightarrow F ) \ne (\overrightarrow F \times \overrightarrow r )$. So, $\overrightarrow \tau \ne (\overrightarrow F \times \overrightarrow r )$.
If the body is not at rest initially and let have a speed of $\overrightarrow {{v_1}} $, then limits of the integration will change, like,$m\int\limits_{v = \overrightarrow {{v_1}} }^{v = \overrightarrow v } {d\overrightarrow v = \int\limits_{t = 0}^{t = t} {(t\widehat i + \widehat j)dt} } $.
From the definition of torque,$\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F )$
Where, $\overrightarrow \tau = $torque acting on the body
$\overrightarrow F = $Force acting on the body
$\overrightarrow r = $Displacement of the body
$\overrightarrow v = $Velocity of the body
$m = $Mass of the body
Using these two equations we will come to the solution of the above problem.
Complete step by step answer:
Mass of the body, $m = 1kg$
At $t = 0s,\overrightarrow v = 0,\overrightarrow r = 0$
Also,$\overrightarrow F = \alpha t\widehat i + \beta \widehat j$, $\alpha = 1N/s,\beta = 1N$
So, $\overrightarrow F = t\widehat i + \widehat j$
From Newton’s second law,$\overrightarrow F = m\overrightarrow a = m\dfrac{{d\overrightarrow v }}{{dt}}$
Now, $m\dfrac{{d\overrightarrow v }}{{dt}} = t\widehat i + \widehat j$\[\]
Or, $md\overrightarrow v = (t\widehat i + \widehat j)dt$
Integrating both sides,$m\int\limits_{v = 0}^{v = \overrightarrow v } {d\overrightarrow v = \int\limits_{t = 0}^{t = t} {(t\widehat i + \widehat j)dt} } $
Or, $\overrightarrow v = \dfrac{{{t^2}}}{2}\widehat i + t\widehat j[\because m = 1kg]$
Or,$\dfrac{{d\overrightarrow r }}{{dt}} = \dfrac{{{t^2}}}{2}\widehat i + t\widehat j$
Or,$d\overrightarrow r = (\dfrac{{{t^2}}}{2}\widehat i + t\widehat j)dt$
Integrating both sides, $\int\limits_{r = 0}^{r = \overrightarrow r } {d\overrightarrow r = \int\limits_{t = 0}^{t = t} {\left( {\dfrac{{{t^2}}}{2}\widehat i + t\widehat j} \right)} dt} $
Or, $\overrightarrow r = \dfrac{{{t^3}}}{6}\widehat i + \dfrac{{{t^2}}}{2}\widehat j$
At t= 1sec,
$\overrightarrow r = \dfrac{{{1^3}}}{6}\widehat i + \dfrac{{{1^2}}}{2}\widehat j = \dfrac{1}{6}\widehat i + \dfrac{1}{2}\widehat j$
$\overrightarrow v = \dfrac{{{1^2}}}{2}\widehat i + 1\widehat j = \dfrac{1}{2}\widehat i + 1\widehat j = \dfrac{1}{2}(\widehat i + 2\widehat j)$………………………….(1)
$\overrightarrow F = \widehat i + \widehat j$
$
\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F ) \\
= (\dfrac{1}{6}\widehat i + \dfrac{1}{2}\widehat j) \times (\widehat i + \widehat j) \\
= (\dfrac{1}{6} - \dfrac{1}{2})\widehat k \\
= - \dfrac{1}{3}\widehat k................................(2) \\
$
$\left| {\overrightarrow r } \right| = \sqrt {{{(\dfrac{1}{6})}^2} + {{(\dfrac{1}{2})}^2}} = \dfrac{{\sqrt {10} }}{6}$……………………………………(3)
Now, from (2) it is clear that at t= 1sec, $|\overrightarrow \tau | = \dfrac{1}{3}$.
So, option (A) is correct.
Direction of $\overrightarrow \tau $is towards unit vector $ - \widehat k$from (2)
So, option (B) is incorrect.
From (1), Velocity of the body at t= 1sec is $\overrightarrow v = \dfrac{1}{2}(\widehat i + 2\widehat j)$m/s
So, option (C) is correct.
From (3), the magnitude of displacement of the body at t= 1s is $\dfrac{{\sqrt {10} }}{6}m$
So, option (D) is incorrect.
So, the correct answers are “Options A and C”.
Note:
It is to be noted that, $\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F )$. $(\overrightarrow r \times \overrightarrow F ) \ne (\overrightarrow F \times \overrightarrow r )$. So, $\overrightarrow \tau \ne (\overrightarrow F \times \overrightarrow r )$.
If the body is not at rest initially and let have a speed of $\overrightarrow {{v_1}} $, then limits of the integration will change, like,$m\int\limits_{v = \overrightarrow {{v_1}} }^{v = \overrightarrow v } {d\overrightarrow v = \int\limits_{t = 0}^{t = t} {(t\widehat i + \widehat j)dt} } $.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Why was the Vernacular Press Act passed by British class 11 social science CBSE

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

Name the nuclear plant located in Uttar Pradesh class 11 social science CBSE

What steps did the French revolutionaries take to create class 11 social science CBSE

How did silk routes link the world Explain with three class 11 social science CBSE

What are the various challenges faced by political class 11 social science CBSE
