Consider a body of mass 1.0kg at rest at the origin at time t=0. A force $\overrightarrow F = \alpha t\widehat i + \beta \widehat j$ is applied on the body, where α=1.0N/s and β=1.0N. The torque acting on the body about the origin at time t=1.0s is τ. Which of the following statements is (are) true?
A. $\left| {\vec \tau } \right| = \dfrac{1}{3}N.m$
B. The torque $\vec \tau $is in the direction of unit vector $ + \widehat k$
C. Velocity of the body at t= 1sec is $\overrightarrow v = \dfrac{1}{2}(\widehat i + 2\widehat j)$m/s
D. The magnitude of displacement of the body at t= 1s is $\dfrac{1}{6}m$
Answer
Verified
463.5k+ views
Hint: From the vector form of 2nd law of Newton,$\overrightarrow F = m\overrightarrow a = m\dfrac{{d\overrightarrow v }}{{dt}}$ and we know,$\overrightarrow v = \dfrac{{d\overrightarrow r }}{{dt}}$
From the definition of torque,$\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F )$
Where, $\overrightarrow \tau = $torque acting on the body
$\overrightarrow F = $Force acting on the body
$\overrightarrow r = $Displacement of the body
$\overrightarrow v = $Velocity of the body
$m = $Mass of the body
Using these two equations we will come to the solution of the above problem.
Complete step by step answer:
Mass of the body, $m = 1kg$
At $t = 0s,\overrightarrow v = 0,\overrightarrow r = 0$
Also,$\overrightarrow F = \alpha t\widehat i + \beta \widehat j$, $\alpha = 1N/s,\beta = 1N$
So, $\overrightarrow F = t\widehat i + \widehat j$
From Newton’s second law,$\overrightarrow F = m\overrightarrow a = m\dfrac{{d\overrightarrow v }}{{dt}}$
Now, $m\dfrac{{d\overrightarrow v }}{{dt}} = t\widehat i + \widehat j$\[\]
Or, $md\overrightarrow v = (t\widehat i + \widehat j)dt$
Integrating both sides,$m\int\limits_{v = 0}^{v = \overrightarrow v } {d\overrightarrow v = \int\limits_{t = 0}^{t = t} {(t\widehat i + \widehat j)dt} } $
Or, $\overrightarrow v = \dfrac{{{t^2}}}{2}\widehat i + t\widehat j[\because m = 1kg]$
Or,$\dfrac{{d\overrightarrow r }}{{dt}} = \dfrac{{{t^2}}}{2}\widehat i + t\widehat j$
Or,$d\overrightarrow r = (\dfrac{{{t^2}}}{2}\widehat i + t\widehat j)dt$
Integrating both sides, $\int\limits_{r = 0}^{r = \overrightarrow r } {d\overrightarrow r = \int\limits_{t = 0}^{t = t} {\left( {\dfrac{{{t^2}}}{2}\widehat i + t\widehat j} \right)} dt} $
Or, $\overrightarrow r = \dfrac{{{t^3}}}{6}\widehat i + \dfrac{{{t^2}}}{2}\widehat j$
At t= 1sec,
$\overrightarrow r = \dfrac{{{1^3}}}{6}\widehat i + \dfrac{{{1^2}}}{2}\widehat j = \dfrac{1}{6}\widehat i + \dfrac{1}{2}\widehat j$
$\overrightarrow v = \dfrac{{{1^2}}}{2}\widehat i + 1\widehat j = \dfrac{1}{2}\widehat i + 1\widehat j = \dfrac{1}{2}(\widehat i + 2\widehat j)$………………………….(1)
$\overrightarrow F = \widehat i + \widehat j$
$
\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F ) \\
= (\dfrac{1}{6}\widehat i + \dfrac{1}{2}\widehat j) \times (\widehat i + \widehat j) \\
= (\dfrac{1}{6} - \dfrac{1}{2})\widehat k \\
= - \dfrac{1}{3}\widehat k................................(2) \\
$
$\left| {\overrightarrow r } \right| = \sqrt {{{(\dfrac{1}{6})}^2} + {{(\dfrac{1}{2})}^2}} = \dfrac{{\sqrt {10} }}{6}$……………………………………(3)
Now, from (2) it is clear that at t= 1sec, $|\overrightarrow \tau | = \dfrac{1}{3}$.
So, option (A) is correct.
Direction of $\overrightarrow \tau $is towards unit vector $ - \widehat k$from (2)
So, option (B) is incorrect.
From (1), Velocity of the body at t= 1sec is $\overrightarrow v = \dfrac{1}{2}(\widehat i + 2\widehat j)$m/s
So, option (C) is correct.
From (3), the magnitude of displacement of the body at t= 1s is $\dfrac{{\sqrt {10} }}{6}m$
So, option (D) is incorrect.
So, the correct answers are “Options A and C”.
Note:
It is to be noted that, $\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F )$. $(\overrightarrow r \times \overrightarrow F ) \ne (\overrightarrow F \times \overrightarrow r )$. So, $\overrightarrow \tau \ne (\overrightarrow F \times \overrightarrow r )$.
If the body is not at rest initially and let have a speed of $\overrightarrow {{v_1}} $, then limits of the integration will change, like,$m\int\limits_{v = \overrightarrow {{v_1}} }^{v = \overrightarrow v } {d\overrightarrow v = \int\limits_{t = 0}^{t = t} {(t\widehat i + \widehat j)dt} } $.
From the definition of torque,$\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F )$
Where, $\overrightarrow \tau = $torque acting on the body
$\overrightarrow F = $Force acting on the body
$\overrightarrow r = $Displacement of the body
$\overrightarrow v = $Velocity of the body
$m = $Mass of the body
Using these two equations we will come to the solution of the above problem.
Complete step by step answer:
Mass of the body, $m = 1kg$
At $t = 0s,\overrightarrow v = 0,\overrightarrow r = 0$
Also,$\overrightarrow F = \alpha t\widehat i + \beta \widehat j$, $\alpha = 1N/s,\beta = 1N$
So, $\overrightarrow F = t\widehat i + \widehat j$
From Newton’s second law,$\overrightarrow F = m\overrightarrow a = m\dfrac{{d\overrightarrow v }}{{dt}}$
Now, $m\dfrac{{d\overrightarrow v }}{{dt}} = t\widehat i + \widehat j$\[\]
Or, $md\overrightarrow v = (t\widehat i + \widehat j)dt$
Integrating both sides,$m\int\limits_{v = 0}^{v = \overrightarrow v } {d\overrightarrow v = \int\limits_{t = 0}^{t = t} {(t\widehat i + \widehat j)dt} } $
Or, $\overrightarrow v = \dfrac{{{t^2}}}{2}\widehat i + t\widehat j[\because m = 1kg]$
Or,$\dfrac{{d\overrightarrow r }}{{dt}} = \dfrac{{{t^2}}}{2}\widehat i + t\widehat j$
Or,$d\overrightarrow r = (\dfrac{{{t^2}}}{2}\widehat i + t\widehat j)dt$
Integrating both sides, $\int\limits_{r = 0}^{r = \overrightarrow r } {d\overrightarrow r = \int\limits_{t = 0}^{t = t} {\left( {\dfrac{{{t^2}}}{2}\widehat i + t\widehat j} \right)} dt} $
Or, $\overrightarrow r = \dfrac{{{t^3}}}{6}\widehat i + \dfrac{{{t^2}}}{2}\widehat j$
At t= 1sec,
$\overrightarrow r = \dfrac{{{1^3}}}{6}\widehat i + \dfrac{{{1^2}}}{2}\widehat j = \dfrac{1}{6}\widehat i + \dfrac{1}{2}\widehat j$
$\overrightarrow v = \dfrac{{{1^2}}}{2}\widehat i + 1\widehat j = \dfrac{1}{2}\widehat i + 1\widehat j = \dfrac{1}{2}(\widehat i + 2\widehat j)$………………………….(1)
$\overrightarrow F = \widehat i + \widehat j$
$
\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F ) \\
= (\dfrac{1}{6}\widehat i + \dfrac{1}{2}\widehat j) \times (\widehat i + \widehat j) \\
= (\dfrac{1}{6} - \dfrac{1}{2})\widehat k \\
= - \dfrac{1}{3}\widehat k................................(2) \\
$
$\left| {\overrightarrow r } \right| = \sqrt {{{(\dfrac{1}{6})}^2} + {{(\dfrac{1}{2})}^2}} = \dfrac{{\sqrt {10} }}{6}$……………………………………(3)
Now, from (2) it is clear that at t= 1sec, $|\overrightarrow \tau | = \dfrac{1}{3}$.
So, option (A) is correct.
Direction of $\overrightarrow \tau $is towards unit vector $ - \widehat k$from (2)
So, option (B) is incorrect.
From (1), Velocity of the body at t= 1sec is $\overrightarrow v = \dfrac{1}{2}(\widehat i + 2\widehat j)$m/s
So, option (C) is correct.
From (3), the magnitude of displacement of the body at t= 1s is $\dfrac{{\sqrt {10} }}{6}m$
So, option (D) is incorrect.
So, the correct answers are “Options A and C”.
Note:
It is to be noted that, $\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F )$. $(\overrightarrow r \times \overrightarrow F ) \ne (\overrightarrow F \times \overrightarrow r )$. So, $\overrightarrow \tau \ne (\overrightarrow F \times \overrightarrow r )$.
If the body is not at rest initially and let have a speed of $\overrightarrow {{v_1}} $, then limits of the integration will change, like,$m\int\limits_{v = \overrightarrow {{v_1}} }^{v = \overrightarrow v } {d\overrightarrow v = \int\limits_{t = 0}^{t = t} {(t\widehat i + \widehat j)dt} } $.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Physics: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 English: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE