Answer
Verified
473.1k+ views
Hint: Try to get the equation of acceleration using the second law of Newton mechanics to relate it to the acceleration of particles performing simple harmonic oscillation. For that, first, find the force by differentiating potential energy.
Formula used:
$F = - \dfrac{{dU}}{{dx}}$; Representing force(F) is the (negative)derivative of Potential energy($U$).
$a\left( t \right) = - {\omega ^2}x\left( t \right)$, where $a(t)$ is acceleration with respect to time, $\omega$ is angular velocity and $x(t)$ is the displacement function.
Complete answer:
Here, a particle is performing a simple harmonic motion in one-dimensional motion which has potential energy at point $x$ from the mean position is $U$.
We have,
Potential energy, \[U = a + b{x^2}\]
Where, $a$ and $b$ are constants
Now Force, $F = - \dfrac{{dU}}{{dx}}$
By putting the value of $U$in the above equation, we get
$
F = - \dfrac{{d \cdot \left( {a + b{x^2}} \right)}}{{dx}} \\
F = - \left[ {\dfrac{d}{{dx}}\left( a \right) + \dfrac{d}{{dx}}\left( {b{x^2}} \right)} \right] \\
$
Since the derivative of constant is zero, so
$\dfrac{d}{{dx}}\left( a \right) = 0$
By substituting this, we have
$ \Rightarrow F = 0 - b \cdot \dfrac{d}{{dx}}\left( {{x^2}} \right)$
$ \Rightarrow F = 0 - b \cdot 2x$ (derivative of ${x^n}$ is $n{x^{\left( {n - 1} \right)}}$)
$ \Rightarrow F = - 2bx \cdot \cdot \cdot \cdot \cdot \cdot \left( 1 \right)$
We know that, $F = ma$ from second law of newton where,
$m$=mass of particle
$a$=acceleration of particle
So,
$ \Rightarrow a = \dfrac{F}{m}$
Put the value of $F$that we get in equation $\left( 1 \right)$
$ \Rightarrow a = \dfrac{F}{m} = - \dfrac{{2b}}{m}x \cdot \cdot \cdot \cdot \cdot \cdot \left( 2 \right)$
The acceleration of a particle performing simple harmonic motion is given by,
$a\left( t \right) = - {\omega ^2}x\left( t \right) \cdot \cdot \cdot \cdot \cdot \cdot \left( 3 \right)$
Here, $\omega $ is the angular velocity of a particle.
By comparing $\left( 2 \right)$and$\left( 3 \right)$, we get
$
\Rightarrow {\omega ^2} = \dfrac{{2b}}{m} \\
\Rightarrow \omega = \sqrt {\dfrac{{2b}}{m}} \\
$
$\therefore$ The frequency of simple harmonic motion depends on $b$and $m$.
So the correct option is A.
Note:
One interesting characteristic of the SHM of an object attached to a spring is the angular frequency, and therefore the period and frequency of the motion, depending on only the mass and the force constant, and not on other factors such as the amplitude of the motion.
Formula used:
$F = - \dfrac{{dU}}{{dx}}$; Representing force(F) is the (negative)derivative of Potential energy($U$).
$a\left( t \right) = - {\omega ^2}x\left( t \right)$, where $a(t)$ is acceleration with respect to time, $\omega$ is angular velocity and $x(t)$ is the displacement function.
Complete answer:
Here, a particle is performing a simple harmonic motion in one-dimensional motion which has potential energy at point $x$ from the mean position is $U$.
We have,
Potential energy, \[U = a + b{x^2}\]
Where, $a$ and $b$ are constants
Now Force, $F = - \dfrac{{dU}}{{dx}}$
By putting the value of $U$in the above equation, we get
$
F = - \dfrac{{d \cdot \left( {a + b{x^2}} \right)}}{{dx}} \\
F = - \left[ {\dfrac{d}{{dx}}\left( a \right) + \dfrac{d}{{dx}}\left( {b{x^2}} \right)} \right] \\
$
Since the derivative of constant is zero, so
$\dfrac{d}{{dx}}\left( a \right) = 0$
By substituting this, we have
$ \Rightarrow F = 0 - b \cdot \dfrac{d}{{dx}}\left( {{x^2}} \right)$
$ \Rightarrow F = 0 - b \cdot 2x$ (derivative of ${x^n}$ is $n{x^{\left( {n - 1} \right)}}$)
$ \Rightarrow F = - 2bx \cdot \cdot \cdot \cdot \cdot \cdot \left( 1 \right)$
We know that, $F = ma$ from second law of newton where,
$m$=mass of particle
$a$=acceleration of particle
So,
$ \Rightarrow a = \dfrac{F}{m}$
Put the value of $F$that we get in equation $\left( 1 \right)$
$ \Rightarrow a = \dfrac{F}{m} = - \dfrac{{2b}}{m}x \cdot \cdot \cdot \cdot \cdot \cdot \left( 2 \right)$
The acceleration of a particle performing simple harmonic motion is given by,
$a\left( t \right) = - {\omega ^2}x\left( t \right) \cdot \cdot \cdot \cdot \cdot \cdot \left( 3 \right)$
Here, $\omega $ is the angular velocity of a particle.
By comparing $\left( 2 \right)$and$\left( 3 \right)$, we get
$
\Rightarrow {\omega ^2} = \dfrac{{2b}}{m} \\
\Rightarrow \omega = \sqrt {\dfrac{{2b}}{m}} \\
$
$\therefore$ The frequency of simple harmonic motion depends on $b$and $m$.
So the correct option is A.
Note:
One interesting characteristic of the SHM of an object attached to a spring is the angular frequency, and therefore the period and frequency of the motion, depending on only the mass and the force constant, and not on other factors such as the amplitude of the motion.
Recently Updated Pages
The locus of the midpoint of the chord of contact of class 11 maths JEE_Main
The number of common tangents to the circles x2 + y2 class 11 maths JEE_Main
A circle passes through the intersection points of class 11 maths JEE_Main
The center of a circle passing through the points 0 class 11 maths JEE_Main
If the two circles x 12 + y 32 r2 and x2 + y2 8x + class 11 maths JEE_Main
A weightless rod is acted upon by upward parallel forces class 11 phy sec 1 JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE