Answer
Verified
431.4k+ views
Hint: Try to apply Hess’s law. Since we need to find the heat of formation of $CO$ try to express the given equations such that on the product side $CO$ molecule is present. Balance the reactions. Reverse any reaction if required. If any reaction is reversed the magnitude of $\Delta {H^ \circ }$ will remain the same , just its sign will be reversed, also if any reaction is divided by any number the$\Delta {H^ \circ }$of the corresponding reaction will be divided by the same. Add the required reactions for obtaining $CO$ on the product side. Add the $\Delta {H^ \circ }$ of the corresponding reactions and obtain the heat of formation of $CO$ .
Complete step-by-step solution:
Hess’s law states that the change in enthalpy of the overall process is equal to the summation of the enthalpy change of the intermediate steps associated with the process.
Now, the formation of $CO$ can be expressed by the equation
$C + \dfrac{1}{2}{O_2} \to CO.............(1)$
The given equations are $:$
$C + {O_2} \to C{O_2};\Delta {H^ \circ } = - xkJ..........(2)$
$2CO + {O_2} \to 2C{O_2};\Delta {H^ \circ } = - ykJ...........(3)$
Reversing equation $(3)$ we get
$2C{O_2} \to 2CO + {O_2};\Delta {H^ \circ } = ykJ..........(4)$
Since the reaction is reversed the magnitude of $\Delta {H^ \circ }$ will remain the same the sign will be reversed.
Dividing equation $(4)$ by $2$ we get
$C{O_2} \to CO + \dfrac{1}{2}{O_2};\Delta {H^ \circ } = \dfrac{y}{2}kJ..........(5)$
Since the equation is divided by two, $\Delta {H^ \circ }$ is also divided by two.
Now adding equations $(2)$ and $(5)$ we get
$C + \dfrac{1}{2}{O_2} \to CO$ which is the desired equation.
So according to Hess’s law we will now add the $\Delta {H^ \circ }$values of the reactions corresponding to $(2)$ and $(5)$ in order to obtain the heat of formation of $CO$ .
Therefore the heat of formation of $CO$ is given by
$\Delta {H^ \circ }_f(CO) = \left( { - x + \dfrac{y}{2}} \right)kJ = \dfrac{{ - 2x + y}}{2}kJ$
Hence the correct answer is (i) $\dfrac{{y - 2x}}{2}kJ$.
Note: You must take care of the sign of the $\Delta {H^ \circ }$ value provided in the equations. Remember to change the sign when you are reversing the given reaction. Also remember to divide the $\Delta {H^ \circ }$ value of a given reaction by the same number with which you are dividing the equation.
Complete step-by-step solution:
Hess’s law states that the change in enthalpy of the overall process is equal to the summation of the enthalpy change of the intermediate steps associated with the process.
Now, the formation of $CO$ can be expressed by the equation
$C + \dfrac{1}{2}{O_2} \to CO.............(1)$
The given equations are $:$
$C + {O_2} \to C{O_2};\Delta {H^ \circ } = - xkJ..........(2)$
$2CO + {O_2} \to 2C{O_2};\Delta {H^ \circ } = - ykJ...........(3)$
Reversing equation $(3)$ we get
$2C{O_2} \to 2CO + {O_2};\Delta {H^ \circ } = ykJ..........(4)$
Since the reaction is reversed the magnitude of $\Delta {H^ \circ }$ will remain the same the sign will be reversed.
Dividing equation $(4)$ by $2$ we get
$C{O_2} \to CO + \dfrac{1}{2}{O_2};\Delta {H^ \circ } = \dfrac{y}{2}kJ..........(5)$
Since the equation is divided by two, $\Delta {H^ \circ }$ is also divided by two.
Now adding equations $(2)$ and $(5)$ we get
$C + \dfrac{1}{2}{O_2} \to CO$ which is the desired equation.
So according to Hess’s law we will now add the $\Delta {H^ \circ }$values of the reactions corresponding to $(2)$ and $(5)$ in order to obtain the heat of formation of $CO$ .
Therefore the heat of formation of $CO$ is given by
$\Delta {H^ \circ }_f(CO) = \left( { - x + \dfrac{y}{2}} \right)kJ = \dfrac{{ - 2x + y}}{2}kJ$
Hence the correct answer is (i) $\dfrac{{y - 2x}}{2}kJ$.
Note: You must take care of the sign of the $\Delta {H^ \circ }$ value provided in the equations. Remember to change the sign when you are reversing the given reaction. Also remember to divide the $\Delta {H^ \circ }$ value of a given reaction by the same number with which you are dividing the equation.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE