Answer
Verified
471.3k+ views
Hint: Apply limit to the given function separately at point x = 0 and x = 1 and then substitute \[\{x\}+\left[ x \right]=x\], $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\tan x}{x}=1$ and $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$, simplify it further. Then check the validity of the options by using various properties of the limit.
Complete step by step answer:
We are given the function \[f(x)=\left[ \begin{matrix}
\dfrac{{{\tan }^{2}}\left\{ x \right\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}} \\
1 \\
\sqrt{\left\{ x \right\}\cot \left\{ x \right\}} \\
\end{matrix}\begin{matrix}
for\text{ }x>0\text{ } \\
for\text{ }x=0\text{ } \\
for\text{ }x<0\text{ } \\
\end{matrix} \right.\]
We will apply the limit to the given function around the point \[x=0\] under various conditions and then check the continuity of the function around the point \[x=1\].
We know that \[\left\{ x \right\}\] is the function that evaluates the fractional value of \[x\] and $\left[ x \right]$ is the function that evaluates the integral value of \[x\].
For\[x>0\], we have the function\[f(x)\]such that\[f\left( x \right)=\dfrac{{{\tan }^{2}}\left\{ x \right\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}}\].
Thus, by applying the limit on the given function, we get
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}\left\{ x \right\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}}$
Now we will apply left hand limit using the formula, $f\left( {{0}^{+}} \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(0+h)-f(0)}{0+h}$, we get
$\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}\left\{ 0+h \right\}}{{{\left( 0+h \right)}^{2}}-{{\left[ 0+h \right]}^{2}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}h}{{{h}^{2}}} \\
\end{align}$
As, we know that $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\tan x}{x}=1$, so, we get \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}x}{{{x}^{2}}}=1\] as well.
Thus, we get \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}\left\{ x \right\}}{{{\left\{ x \right\}}^{2}}}=1\].
Hence, we have the value of limit as \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}\left\{ x \right\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}}=1\].
Now, we will consider the case \[x<0\]. For \[x<0\], we have the function \[f(x)\] such that \[f\left( x \right)=\sqrt{\left\{ x \right\}\cot \left\{ x \right\}}\].
Applying the limit on the given function, we get
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\{ x \right\}\cot \left\{ x \right\}}$
Further simplifying the limit, we have
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\{ x \right\}\dfrac{\cos \left\{ x \right\}}{\sin \left\{ x \right\}}}$ as we know that \[\cot x=\dfrac{\cos x}{\sin x}\].
As we know that $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$, we have\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\{ x \right\}\dfrac{\cos \left\{ x \right\}}{\sin \left\{ x \right\}}}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\cos \left\{ x \right\}}\]
Thus, we have
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\cos \left\{ x \right\}}=\sqrt{\cos 0}=1\]
Hence, we have
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\{ x \right\}\cot \left\{ x \right\}}=1\]
Now, we need to evaluate the value of
${{\cot }^{-1}}{{\left( \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x) \right)}^{2}}$
As \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\{ x \right\}\cot \left\{ x \right\}}=1\], we have
\[{{\cot }^{-1}}{{\left( \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x) \right)}^{2}}={{\cot }^{-1}}{{\left( 1 \right)}^{2}}={{\cot }^{-1}}1=\dfrac{\pi }{4}\]
Now, we will check the continuity of \[f\] at point $x=1$ as for \[x=1\], we have
\[f\left( {{x}^{-}} \right)=f\left( {{x}^{+}} \right)\].
Thus, the function\[f\]is continuous at $x=1$
So, the correct answers are “Option A, B and D”.
Note: It’s necessary to evaluate both left- and right-hand side of the limit around a point. Otherwise, we won’t get a correct answer if we apply only one side of the limit.
Students sometimes substitute \[\{x\}+\left[ x \right]=x\Rightarrow \left[ x \right]=x-\{x\}\], in this way the process will get lengthy and chances of getting the wrong solution is there.
Complete step by step answer:
We are given the function \[f(x)=\left[ \begin{matrix}
\dfrac{{{\tan }^{2}}\left\{ x \right\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}} \\
1 \\
\sqrt{\left\{ x \right\}\cot \left\{ x \right\}} \\
\end{matrix}\begin{matrix}
for\text{ }x>0\text{ } \\
for\text{ }x=0\text{ } \\
for\text{ }x<0\text{ } \\
\end{matrix} \right.\]
We will apply the limit to the given function around the point \[x=0\] under various conditions and then check the continuity of the function around the point \[x=1\].
We know that \[\left\{ x \right\}\] is the function that evaluates the fractional value of \[x\] and $\left[ x \right]$ is the function that evaluates the integral value of \[x\].
For\[x>0\], we have the function\[f(x)\]such that\[f\left( x \right)=\dfrac{{{\tan }^{2}}\left\{ x \right\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}}\].
Thus, by applying the limit on the given function, we get
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}\left\{ x \right\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}}$
Now we will apply left hand limit using the formula, $f\left( {{0}^{+}} \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(0+h)-f(0)}{0+h}$, we get
$\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}\left\{ 0+h \right\}}{{{\left( 0+h \right)}^{2}}-{{\left[ 0+h \right]}^{2}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}h}{{{h}^{2}}} \\
\end{align}$
As, we know that $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\tan x}{x}=1$, so, we get \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}x}{{{x}^{2}}}=1\] as well.
Thus, we get \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}\left\{ x \right\}}{{{\left\{ x \right\}}^{2}}}=1\].
Hence, we have the value of limit as \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{{{\tan }^{2}}\left\{ x \right\}}{{{x}^{2}}-{{\left[ x \right]}^{2}}}=1\].
Now, we will consider the case \[x<0\]. For \[x<0\], we have the function \[f(x)\] such that \[f\left( x \right)=\sqrt{\left\{ x \right\}\cot \left\{ x \right\}}\].
Applying the limit on the given function, we get
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\{ x \right\}\cot \left\{ x \right\}}$
Further simplifying the limit, we have
$\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\{ x \right\}\dfrac{\cos \left\{ x \right\}}{\sin \left\{ x \right\}}}$ as we know that \[\cot x=\dfrac{\cos x}{\sin x}\].
As we know that $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$, we have\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\{ x \right\}\dfrac{\cos \left\{ x \right\}}{\sin \left\{ x \right\}}}=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\cos \left\{ x \right\}}\]
Thus, we have
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\cos \left\{ x \right\}}=\sqrt{\cos 0}=1\]
Hence, we have
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\{ x \right\}\cot \left\{ x \right\}}=1\]
Now, we need to evaluate the value of
${{\cot }^{-1}}{{\left( \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x) \right)}^{2}}$
As \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\sqrt{\left\{ x \right\}\cot \left\{ x \right\}}=1\], we have
\[{{\cot }^{-1}}{{\left( \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x) \right)}^{2}}={{\cot }^{-1}}{{\left( 1 \right)}^{2}}={{\cot }^{-1}}1=\dfrac{\pi }{4}\]
Now, we will check the continuity of \[f\] at point $x=1$ as for \[x=1\], we have
\[f\left( {{x}^{-}} \right)=f\left( {{x}^{+}} \right)\].
Thus, the function\[f\]is continuous at $x=1$
So, the correct answers are “Option A, B and D”.
Note: It’s necessary to evaluate both left- and right-hand side of the limit around a point. Otherwise, we won’t get a correct answer if we apply only one side of the limit.
Students sometimes substitute \[\{x\}+\left[ x \right]=x\Rightarrow \left[ x \right]=x-\{x\}\], in this way the process will get lengthy and chances of getting the wrong solution is there.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE