Answer
Verified
495.9k+ views
Hint: Factorize the given number in its prime factor form. If a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the sum of its divisors will be $\dfrac{{{p_1}^{a + 1} - 1}}{{{p_1} - 1}} \times \dfrac{{{p_2}^{b + 1} - 1}}{{{p_2} - 1}} \times \dfrac{{{p_3}^{c + 1} - 1}}{{{p_3} - 1}} \times ....$ Use this formula to find out the sum of the divisors.
Complete step-by-step answer:
According to the question, the given number is 21600. We have to determine the sum of its divisors.
This number can be written as:
$
\Rightarrow 21600 = 216 \times 100 \\
\Rightarrow 21600 = {6^3} \times 100 \\
\Rightarrow 21600 = {\left( {2 \times 3} \right)^3} \times 4 \times 25 \\
\Rightarrow 21600 = {2^3} \times {3^3} \times {2^2} \times {5^2} \\
\Rightarrow 21600 = {2^5} \times {3^3} \times {5^2} \\
$
Thus, the number is factorized in its prime factor form.
We know that if a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the sum of its divisors will be $\dfrac{{{p_1}^{a + 1} - 1}}{{{p_1} - 1}} \times \dfrac{{{p_2}^{b + 1} - 1}}{{{p_2} - 1}} \times \dfrac{{{p_3}^{c + 1} - 1}}{{{p_3} - 1}} \times ....$
Using above formula for $21600 = {2^5} \times {3^3} \times {5^2}$, we’ll get:
$ \Rightarrow $ Sum of divisors $ = \dfrac{{{2^{5 + 1}} - 1}}{{2 - 1}} \times \dfrac{{{3^{3 + 1}} - 1}}{{3 - 1}} \times \dfrac{{{5^{2 + 1}} - 1}}{{5 - 1}}$
$ \Rightarrow $ Sum of divisors $ = \dfrac{{{2^6} - 1}}{{2 - 1}} \times \dfrac{{{3^4} - 1}}{{3 - 1}} \times \dfrac{{{5^3} - 1}}{{5 - 1}} = \dfrac{{64 - 1}}{1} \times \dfrac{{81 - 1}}{2} \times \dfrac{{125 - 1}}{4}$
$ \Rightarrow $ Sum of divisors $ = 63 \times \dfrac{{80}}{2} \times \dfrac{{124}}{4} = 63 \times 40 \times 31$
$ \Rightarrow $ Sum of divisors $ = 78120$
Therefore, the sum of the divisors of 21600 is 78120.
Note: We can also find out the number of divisors of 21600.
We know that if a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the number of factors of this number is $\left( {a + 1} \right) \times \left( {b + 1} \right) \times \left( {c + 1} \right) \times ...$
Thus, the number of factors of $21600 = {2^5} \times {3^3} \times {5^2}$ will be:
$
\Rightarrow {\text{ No}}{\text{. of factors }} = \left( {5 + 1} \right)\left( {3 + 1} \right)\left( {2 + 1} \right) = 6 \times 4 \times 3 \\
\Rightarrow {\text{ No}}{\text{. of factors }} = 72 \\
$
Complete step-by-step answer:
According to the question, the given number is 21600. We have to determine the sum of its divisors.
This number can be written as:
$
\Rightarrow 21600 = 216 \times 100 \\
\Rightarrow 21600 = {6^3} \times 100 \\
\Rightarrow 21600 = {\left( {2 \times 3} \right)^3} \times 4 \times 25 \\
\Rightarrow 21600 = {2^3} \times {3^3} \times {2^2} \times {5^2} \\
\Rightarrow 21600 = {2^5} \times {3^3} \times {5^2} \\
$
Thus, the number is factorized in its prime factor form.
We know that if a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the sum of its divisors will be $\dfrac{{{p_1}^{a + 1} - 1}}{{{p_1} - 1}} \times \dfrac{{{p_2}^{b + 1} - 1}}{{{p_2} - 1}} \times \dfrac{{{p_3}^{c + 1} - 1}}{{{p_3} - 1}} \times ....$
Using above formula for $21600 = {2^5} \times {3^3} \times {5^2}$, we’ll get:
$ \Rightarrow $ Sum of divisors $ = \dfrac{{{2^{5 + 1}} - 1}}{{2 - 1}} \times \dfrac{{{3^{3 + 1}} - 1}}{{3 - 1}} \times \dfrac{{{5^{2 + 1}} - 1}}{{5 - 1}}$
$ \Rightarrow $ Sum of divisors $ = \dfrac{{{2^6} - 1}}{{2 - 1}} \times \dfrac{{{3^4} - 1}}{{3 - 1}} \times \dfrac{{{5^3} - 1}}{{5 - 1}} = \dfrac{{64 - 1}}{1} \times \dfrac{{81 - 1}}{2} \times \dfrac{{125 - 1}}{4}$
$ \Rightarrow $ Sum of divisors $ = 63 \times \dfrac{{80}}{2} \times \dfrac{{124}}{4} = 63 \times 40 \times 31$
$ \Rightarrow $ Sum of divisors $ = 78120$
Therefore, the sum of the divisors of 21600 is 78120.
Note: We can also find out the number of divisors of 21600.
We know that if a number can be written as ${p_1}^a \times {p_2}^b \times {p_3}^c....$, where ${p_1},{p_2}$ and ${p_3}$ are prime numbers, then the number of factors of this number is $\left( {a + 1} \right) \times \left( {b + 1} \right) \times \left( {c + 1} \right) \times ...$
Thus, the number of factors of $21600 = {2^5} \times {3^3} \times {5^2}$ will be:
$
\Rightarrow {\text{ No}}{\text{. of factors }} = \left( {5 + 1} \right)\left( {3 + 1} \right)\left( {2 + 1} \right) = 6 \times 4 \times 3 \\
\Rightarrow {\text{ No}}{\text{. of factors }} = 72 \\
$
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers