Consider the probability of an event E in which if $P\left( E \right)=0.42$ then what is the value of $P\left( \text{not E} \right)$?
Answer
Verified
489.9k+ views
Hint: It is given that $P\left( E \right)=0.42$ and we know that the total probability is always 1 so addition of $P\left( E \right)\And P\left( \text{not E} \right)$ is equal to 1. When we subtract P (E) from 1 then we will get the value of $P\left( \text{not E} \right)$.
Complete step-by-step answer:
The probability of an event E is given by:
$P\left( E \right)=0.42$
We know that probability of an event E is equal to favorable outcomes divided by the total outcomes.
$P\left( E \right)=\dfrac{\text{Favorable Outcomes}}{\text{Total Outcomes}}$
We also know that, total probability is equal to 1. Total probability means sum of favorable outcomes and unfavorable outcomes divided by the total outcomes.
$\begin{align}
& \text{Total Probability}=\dfrac{\left( \text{Favorable + Unfavorable} \right)\text{Outcomes}}{\text{Total outcomes}}=1 \\
& \Rightarrow \text{Total Probability}=\dfrac{\text{Favorable Outcomes}}{\text{TotalOutcomes}}+\dfrac{\text{Unfavorable Outcomes}}{\text{Total Outcomes}}=1.....Eq.(1) \\
\end{align}$
We have shown above that:
$P\left( E \right)=\dfrac{\text{Favorable Outcomes}}{\text{Total Outcomes}}$
So, $P\left( \text{not E} \right)$ is equal to:
$P\left( \text{not E} \right)=\dfrac{\text{Unfavorable Outcomes}}{\text{Total Outcomes}}$
Substituting the expressions of $P\left( E \right)\And P\left( \text{not E} \right)$ that we have shown above in eq. (1) we get,
$\text{Total Probability}=P\left( E \right)+P\left( \text{not E} \right)=1$
Substituting the value of $P\left( E \right)=0.42$ in the above equation we get,
$0.42+P\left( \text{not E} \right)=1$
Subtracting 0.42 on both the sides of the above equation we get,
$\begin{align}
& P\left( \text{not E} \right)=1-0.42 \\
& \Rightarrow P\left( \text{not E} \right)=0.58 \\
\end{align}$
From the above solution, we have got the value of $P\left( \text{not E} \right)=0.58$.
Note: You can also face problems in which in place of “not E” $\left( \overline{\text{E}} \right)$ is given. For instance, you have to find the probability of $P\left( \overline{E} \right)$ so the manner of calculating the probability of $\left( \overline{\text{E}} \right)$ is same as the probability of $P\left( \text{not E} \right)$ which we have solved in this question.
Whenever you see $P\left( \text{not E} \right)$ or $P\left( \overline{E} \right)$ directly write the following expression:
$P\left( \text{not E} \right)=P\left( \overline{E} \right)=1-P\left( \text{E} \right)$
Memorizing this concept will save your lot of time in solving questions in the exam.
Complete step-by-step answer:
The probability of an event E is given by:
$P\left( E \right)=0.42$
We know that probability of an event E is equal to favorable outcomes divided by the total outcomes.
$P\left( E \right)=\dfrac{\text{Favorable Outcomes}}{\text{Total Outcomes}}$
We also know that, total probability is equal to 1. Total probability means sum of favorable outcomes and unfavorable outcomes divided by the total outcomes.
$\begin{align}
& \text{Total Probability}=\dfrac{\left( \text{Favorable + Unfavorable} \right)\text{Outcomes}}{\text{Total outcomes}}=1 \\
& \Rightarrow \text{Total Probability}=\dfrac{\text{Favorable Outcomes}}{\text{TotalOutcomes}}+\dfrac{\text{Unfavorable Outcomes}}{\text{Total Outcomes}}=1.....Eq.(1) \\
\end{align}$
We have shown above that:
$P\left( E \right)=\dfrac{\text{Favorable Outcomes}}{\text{Total Outcomes}}$
So, $P\left( \text{not E} \right)$ is equal to:
$P\left( \text{not E} \right)=\dfrac{\text{Unfavorable Outcomes}}{\text{Total Outcomes}}$
Substituting the expressions of $P\left( E \right)\And P\left( \text{not E} \right)$ that we have shown above in eq. (1) we get,
$\text{Total Probability}=P\left( E \right)+P\left( \text{not E} \right)=1$
Substituting the value of $P\left( E \right)=0.42$ in the above equation we get,
$0.42+P\left( \text{not E} \right)=1$
Subtracting 0.42 on both the sides of the above equation we get,
$\begin{align}
& P\left( \text{not E} \right)=1-0.42 \\
& \Rightarrow P\left( \text{not E} \right)=0.58 \\
\end{align}$
From the above solution, we have got the value of $P\left( \text{not E} \right)=0.58$.
Note: You can also face problems in which in place of “not E” $\left( \overline{\text{E}} \right)$ is given. For instance, you have to find the probability of $P\left( \overline{E} \right)$ so the manner of calculating the probability of $\left( \overline{\text{E}} \right)$ is same as the probability of $P\left( \text{not E} \right)$ which we have solved in this question.
Whenever you see $P\left( \text{not E} \right)$ or $P\left( \overline{E} \right)$ directly write the following expression:
$P\left( \text{not E} \right)=P\left( \overline{E} \right)=1-P\left( \text{E} \right)$
Memorizing this concept will save your lot of time in solving questions in the exam.
Recently Updated Pages
A uniform rod of length l and mass m is free to rotate class 10 physics CBSE
Solve the following pairs of linear equations by elimination class 10 maths CBSE
What could be the possible ones digits of the square class 10 maths CBSE
Where was the Great Bath found A Harappa B Mohenjodaro class 10 social science CBSE
PQ is a tangent to a circle with centre O at the point class 10 maths CBSE
The measures of two adjacent sides of a parallelogram class 10 maths CBSE
Trending doubts
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE
Frogs can live both on land and in water name the adaptations class 10 biology CBSE
Fill in the blank One of the students absent yesterday class 10 english CBSE
Write a letter to the Principal of your school requesting class 10 english CBSE