Answer
Verified
480.6k+ views
Hint: It is given that $P\left( E \right)=0.42$ and we know that the total probability is always 1 so addition of $P\left( E \right)\And P\left( \text{not E} \right)$ is equal to 1. When we subtract P (E) from 1 then we will get the value of $P\left( \text{not E} \right)$.
Complete step-by-step answer:
The probability of an event E is given by:
$P\left( E \right)=0.42$
We know that probability of an event E is equal to favorable outcomes divided by the total outcomes.
$P\left( E \right)=\dfrac{\text{Favorable Outcomes}}{\text{Total Outcomes}}$
We also know that, total probability is equal to 1. Total probability means sum of favorable outcomes and unfavorable outcomes divided by the total outcomes.
$\begin{align}
& \text{Total Probability}=\dfrac{\left( \text{Favorable + Unfavorable} \right)\text{Outcomes}}{\text{Total outcomes}}=1 \\
& \Rightarrow \text{Total Probability}=\dfrac{\text{Favorable Outcomes}}{\text{TotalOutcomes}}+\dfrac{\text{Unfavorable Outcomes}}{\text{Total Outcomes}}=1.....Eq.(1) \\
\end{align}$
We have shown above that:
$P\left( E \right)=\dfrac{\text{Favorable Outcomes}}{\text{Total Outcomes}}$
So, $P\left( \text{not E} \right)$ is equal to:
$P\left( \text{not E} \right)=\dfrac{\text{Unfavorable Outcomes}}{\text{Total Outcomes}}$
Substituting the expressions of $P\left( E \right)\And P\left( \text{not E} \right)$ that we have shown above in eq. (1) we get,
$\text{Total Probability}=P\left( E \right)+P\left( \text{not E} \right)=1$
Substituting the value of $P\left( E \right)=0.42$ in the above equation we get,
$0.42+P\left( \text{not E} \right)=1$
Subtracting 0.42 on both the sides of the above equation we get,
$\begin{align}
& P\left( \text{not E} \right)=1-0.42 \\
& \Rightarrow P\left( \text{not E} \right)=0.58 \\
\end{align}$
From the above solution, we have got the value of $P\left( \text{not E} \right)=0.58$.
Note: You can also face problems in which in place of “not E” $\left( \overline{\text{E}} \right)$ is given. For instance, you have to find the probability of $P\left( \overline{E} \right)$ so the manner of calculating the probability of $\left( \overline{\text{E}} \right)$ is same as the probability of $P\left( \text{not E} \right)$ which we have solved in this question.
Whenever you see $P\left( \text{not E} \right)$ or $P\left( \overline{E} \right)$ directly write the following expression:
$P\left( \text{not E} \right)=P\left( \overline{E} \right)=1-P\left( \text{E} \right)$
Memorizing this concept will save your lot of time in solving questions in the exam.
Complete step-by-step answer:
The probability of an event E is given by:
$P\left( E \right)=0.42$
We know that probability of an event E is equal to favorable outcomes divided by the total outcomes.
$P\left( E \right)=\dfrac{\text{Favorable Outcomes}}{\text{Total Outcomes}}$
We also know that, total probability is equal to 1. Total probability means sum of favorable outcomes and unfavorable outcomes divided by the total outcomes.
$\begin{align}
& \text{Total Probability}=\dfrac{\left( \text{Favorable + Unfavorable} \right)\text{Outcomes}}{\text{Total outcomes}}=1 \\
& \Rightarrow \text{Total Probability}=\dfrac{\text{Favorable Outcomes}}{\text{TotalOutcomes}}+\dfrac{\text{Unfavorable Outcomes}}{\text{Total Outcomes}}=1.....Eq.(1) \\
\end{align}$
We have shown above that:
$P\left( E \right)=\dfrac{\text{Favorable Outcomes}}{\text{Total Outcomes}}$
So, $P\left( \text{not E} \right)$ is equal to:
$P\left( \text{not E} \right)=\dfrac{\text{Unfavorable Outcomes}}{\text{Total Outcomes}}$
Substituting the expressions of $P\left( E \right)\And P\left( \text{not E} \right)$ that we have shown above in eq. (1) we get,
$\text{Total Probability}=P\left( E \right)+P\left( \text{not E} \right)=1$
Substituting the value of $P\left( E \right)=0.42$ in the above equation we get,
$0.42+P\left( \text{not E} \right)=1$
Subtracting 0.42 on both the sides of the above equation we get,
$\begin{align}
& P\left( \text{not E} \right)=1-0.42 \\
& \Rightarrow P\left( \text{not E} \right)=0.58 \\
\end{align}$
From the above solution, we have got the value of $P\left( \text{not E} \right)=0.58$.
Note: You can also face problems in which in place of “not E” $\left( \overline{\text{E}} \right)$ is given. For instance, you have to find the probability of $P\left( \overline{E} \right)$ so the manner of calculating the probability of $\left( \overline{\text{E}} \right)$ is same as the probability of $P\left( \text{not E} \right)$ which we have solved in this question.
Whenever you see $P\left( \text{not E} \right)$ or $P\left( \overline{E} \right)$ directly write the following expression:
$P\left( \text{not E} \right)=P\left( \overline{E} \right)=1-P\left( \text{E} \right)$
Memorizing this concept will save your lot of time in solving questions in the exam.
Recently Updated Pages
Select the antonym for the following word from the class 10 english CBSE
Select the antonym for the following word from the class 10 english CBSE
Select the antonym for the following word from the class 10 english CBSE
Select the antonym for the following word from the class 10 english CBSE
Select the antonym for the following word from the class 10 english CBSE
Select the antonym for the following word from the class 10 english CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Chahalgani means ATurkish noble under Iltutmish BSlaves class 10 social science CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
the Gond raja of Garha Katanga assumed the title of class 10 social science CBSE