Answer
Verified
503.1k+ views
Hint: Check collinearity of the given 3 points by using section formula.
The given points can be rewritten in simpler terms as
$P=\left( -\sin \left( \beta -\alpha \right),-\cos \beta \right)=\left( {{x}_{1}},{{y}_{1}} \right)\cdots \cdots
\cdots \left( i \right)$
$Q=\left( \cos \left( \beta -\alpha \right),\sin \beta \right)=\left( {{x}_{2}},{{y}_{2}} \right)\cdots \cdots
\cdots \left( ii \right)$
Let the coordinates of the third point $R=\left( \cos \left( \beta -\alpha +\theta \right),\sin \left( \beta -
\theta \right) \right)=\left( {{x}_{3}},{{y}_{3}} \right)$. The ${{x}_{3}}$ coordinate can be simplified as,
${{x}_{3}}=\left( \cos \left( \beta -\alpha +\theta \right) \right)=\cos \left[ \left( \beta -\alpha
\right)+\theta \right]$
Applying the expansion $\cos \left( a+b \right)=\cos a\cos b-\sin a\sin b$,
${{x}_{3}}=\cos \left[ \left( \beta -\alpha \right)+\theta \right]=\cos \left( \beta -\alpha \right)\cos
\theta -\sin \left( \beta -\alpha \right)\sin \theta $
Substituting the corresponding terms from equations $\left( i \right)$ and $\left( ii \right)$,
${{x}_{3}}=\cos \left[ \left( \beta -\alpha \right)+\theta \right]={{x}_{2}}\cos \theta +{{x}_{1}}\sin \theta
$
Now, the ${{y}_{3}}$ coordinate can be simplified as,
${{y}_{3}}=\sin \left( \beta -\theta \right)$
Applying the expansion $\sin \left( a-b \right)=\sin a\cos b-\cos a\sin b$,
${{y}_{3}}=\sin \left( \beta -\theta \right)=\sin \beta \cos \theta -\cos \beta \sin \theta $
Substituting the corresponding terms from equations $\left( i \right)$ and $\left( ii \right)$,
${{y}_{3}}=\sin \left( \beta -\theta \right)={{y}_{2}}\cos \theta +{{y}_{1}}\sin \theta $
So, therefore the third point can be written as,
$R=\left( {{x}_{2}}\cos \theta +{{x}_{1}}\sin \theta ,{{y}_{2}}\cos \theta +{{y}_{1}}\sin \theta \right)\cdots
\cdots \cdots \left( iii \right)$
Consider the line with endpoints PQ. Also consider the point R that lies on the line diving it in the ratio as
below,
Using the section formula, the coordinates of point R can be obtained as,
$R=\left( \dfrac{{{x}_{1}}\cos \theta +{{x}_{2}}\sin \theta }{\sin \theta +\cos \theta },\dfrac{{{y}_{1}}\cos
\theta +{{y}_{2}}\sin \theta }{\sin \theta +\cos \theta } \right)$
From equation $\left( iii \right)$, we have the coordinates of R as $\left( {{x}_{2}}\cos \theta
+{{x}_{1}}\sin \theta ,{{y}_{2}}\cos \theta +{{y}_{1}}\sin \theta \right)$. Comparing this with the above
coordinates, it is clear that the form of the coordinates is not the same.
Therefore, the point R will not lie on the line PQ. It means that the points P, Q and R are not collinear.
Hence, we obtain the correct answer as option (d).
Note: The problem can be solved by applying the condition for collinear points. To check if the points P,
Q and R lie on the same line, consider that point Q lies on line PR. Then, the slope of line PQ and slope of
line QR must be equal for the points to be collinear.
The given points can be rewritten in simpler terms as
$P=\left( -\sin \left( \beta -\alpha \right),-\cos \beta \right)=\left( {{x}_{1}},{{y}_{1}} \right)\cdots \cdots
\cdots \left( i \right)$
$Q=\left( \cos \left( \beta -\alpha \right),\sin \beta \right)=\left( {{x}_{2}},{{y}_{2}} \right)\cdots \cdots
\cdots \left( ii \right)$
Let the coordinates of the third point $R=\left( \cos \left( \beta -\alpha +\theta \right),\sin \left( \beta -
\theta \right) \right)=\left( {{x}_{3}},{{y}_{3}} \right)$. The ${{x}_{3}}$ coordinate can be simplified as,
${{x}_{3}}=\left( \cos \left( \beta -\alpha +\theta \right) \right)=\cos \left[ \left( \beta -\alpha
\right)+\theta \right]$
Applying the expansion $\cos \left( a+b \right)=\cos a\cos b-\sin a\sin b$,
${{x}_{3}}=\cos \left[ \left( \beta -\alpha \right)+\theta \right]=\cos \left( \beta -\alpha \right)\cos
\theta -\sin \left( \beta -\alpha \right)\sin \theta $
Substituting the corresponding terms from equations $\left( i \right)$ and $\left( ii \right)$,
${{x}_{3}}=\cos \left[ \left( \beta -\alpha \right)+\theta \right]={{x}_{2}}\cos \theta +{{x}_{1}}\sin \theta
$
Now, the ${{y}_{3}}$ coordinate can be simplified as,
${{y}_{3}}=\sin \left( \beta -\theta \right)$
Applying the expansion $\sin \left( a-b \right)=\sin a\cos b-\cos a\sin b$,
${{y}_{3}}=\sin \left( \beta -\theta \right)=\sin \beta \cos \theta -\cos \beta \sin \theta $
Substituting the corresponding terms from equations $\left( i \right)$ and $\left( ii \right)$,
${{y}_{3}}=\sin \left( \beta -\theta \right)={{y}_{2}}\cos \theta +{{y}_{1}}\sin \theta $
So, therefore the third point can be written as,
$R=\left( {{x}_{2}}\cos \theta +{{x}_{1}}\sin \theta ,{{y}_{2}}\cos \theta +{{y}_{1}}\sin \theta \right)\cdots
\cdots \cdots \left( iii \right)$
Consider the line with endpoints PQ. Also consider the point R that lies on the line diving it in the ratio as
below,
Using the section formula, the coordinates of point R can be obtained as,
$R=\left( \dfrac{{{x}_{1}}\cos \theta +{{x}_{2}}\sin \theta }{\sin \theta +\cos \theta },\dfrac{{{y}_{1}}\cos
\theta +{{y}_{2}}\sin \theta }{\sin \theta +\cos \theta } \right)$
From equation $\left( iii \right)$, we have the coordinates of R as $\left( {{x}_{2}}\cos \theta
+{{x}_{1}}\sin \theta ,{{y}_{2}}\cos \theta +{{y}_{1}}\sin \theta \right)$. Comparing this with the above
coordinates, it is clear that the form of the coordinates is not the same.
Therefore, the point R will not lie on the line PQ. It means that the points P, Q and R are not collinear.
Hence, we obtain the correct answer as option (d).
Note: The problem can be solved by applying the condition for collinear points. To check if the points P,
Q and R lie on the same line, consider that point Q lies on line PR. Then, the slope of line PQ and slope of
line QR must be equal for the points to be collinear.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE