
Consider$f(x)$$ = {\tan ^{ - 1}}\left( {\sqrt {\dfrac{{1 + \sin x}}{{1 - \sin x}}} } \right)$ where$ x \in \left( {0,\dfrac{\pi }{2}} \right)$ . A normal to $y = f(x)$at $x = \dfrac{\pi }{6}$also passes through the point:
A. $(0,0)$
B. $\left( {0,\dfrac{{2\pi }}{3}} \right)$
C. $\left( {\dfrac{\pi }{6},0} \right)$
D. $\left( {\dfrac{\pi }{4},0} \right)$
Answer
493.2k+ views
Hint:Firstly we will try to reduce $f\left( x \right)$ into a simpler form and then we will consider the equation of the normal to $f\left( x \right)$ at the given point $x = \dfrac{\pi }{6}$ and get the point required.
Complete step-by-step answer:
$f\left( x \right)$$ = {\tan ^{ - 1}}\left( {\sqrt {\dfrac{{1 + \sin x}}{{1 - \sin x}}} } \right)$ where $x \in \left( {0,\dfrac{\pi }{2}} \right)$$ - - - - - - (1)$
Consider $y = $$f(x)$$ = {\tan ^{ - 1}}\left( {\sqrt {\dfrac{{1 + \sin x}}{{1 - \sin x}}} } \right)$
Using $1 = {\sin ^2}x + {\cos ^2}x$ and $\sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ we can write
$f(x) = {\tan ^{ - 1}}\sqrt {\dfrac{{{{\left( {\sin \dfrac{x}{2} + \cos \dfrac{x}{2}} \right)}^2}}}{{{{\left( {\sin \dfrac{x}{2} - \cos \dfrac{x}{2}} \right)}^2}}}} - - - - - - (2)$
$f(x) = {\tan ^{ - 1}}\sqrt {\dfrac{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2} + 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2} - 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}} $
Using ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ where $a = \sin \dfrac{x}{2},b = \cos \dfrac{x}{2}$
Now it is given that $x \in \left( {0,\dfrac{\pi }{2}} \right)$
$0 < x < \dfrac{\pi }{2}$
$0 < \dfrac{x}{2} < \dfrac{\pi }{4}$
Therefore for $\dfrac{x}{2} \in \left( {0,\dfrac{\pi }{4}} \right)$, we know that,
$\cos \dfrac{x}{2} > \sin \dfrac{x}{2}$
$\cos \dfrac{x}{2} - \sin \dfrac{x}{2} > 0- - - - - - (3)$
Now by Substituting the value of equation 3 in equation 2 we will get.
$f\left( x \right) = {\tan ^{ - 1}}\left( {\dfrac{{\sin \dfrac{x}{2} + \cos \dfrac{x}{2}}}{{\cos \dfrac{x}{2} - \sin \dfrac{x}{2}}}} \right)$
$f\left( x \right) = {\tan ^{ - 1}}\left( {\dfrac{{(\tan \dfrac{x}{2} + 1)\cos \dfrac{x}{2}}}{{\cos \dfrac{x}{2}(1 - \tan \dfrac{x}{2})}}} \right)$
$f\left( x \right) = {\tan ^{ - 1}}\left( {\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}.1}}} \right)$
Using $\tan \dfrac{\pi }{4} = 1$
$f\left( x \right) = {\tan ^{ - 1}}\left( {\dfrac{{\tan \dfrac{\pi }{4} + \tan \dfrac{x}{2}}}{{\tan \dfrac{\pi }{4} - \tan \dfrac{x}{2}.\tan \dfrac{\pi }{4}}}} \right)$
${\tan ^{ - 1}}\left( {\dfrac{{a + b}}{{1 - a.b}}} \right) = {\tan ^{ - 1}}a + {\tan ^{ - 1}}b$
$f\left( x \right) = {\tan ^{ - 1}}\left( {\tan \dfrac{\pi }{4}} \right) + {\tan ^{ - 1}}\left( {\tan \dfrac{x}{2}} \right)$
Now we use
$a = {\tan ^{ - 1}}\left( {\tan a} \right)$
$y = f\left( x \right) = \left( {\dfrac{\pi }{4}} \right) + \left( {\dfrac{x}{2}} \right) - - - - - (4)$
Now take derivative of (4) with respect to $x$,
$f'(x) = 0 + \dfrac{1}{2} = \dfrac{1}{2}$
So slope of the $y = f\left( x \right) = \dfrac{1}{2}$
Slope of line normal to $f(x) = - 2$
So according to the question,
We need to find the equation of the normal to $y = f\left( x \right)$ at $x = \dfrac{\pi }{6}$
Firstly we need to put $x = \dfrac{\pi }{6}$ in equation (4) and get the value of $y$
$y = f\left( {\dfrac{\pi }{6}} \right) = \left( {\dfrac{\pi }{4}} \right) + \left( {\dfrac{\pi }{{2.6}}} \right) = \dfrac{\pi }{3}$
$y = \dfrac{\pi }{3}$
So normal to $y = f(x)$ is at the point $\left( {\dfrac{\pi }{6},\dfrac{\pi }{3}} \right)$
So equation of the normal will be:
$(y - \dfrac{\pi }{3}) = - 2(y - \dfrac{\pi }{6}) - - - - - - (5)$
Now we have to check the options by putting them in this equation:
Taking $(0,0)$
$(0 - \dfrac{\pi }{3}) = - 2(0 - \dfrac{\pi }{6})$
$ - \dfrac{\pi }{3} \ne \dfrac{\pi }{3}$
So it is not satisfying.
Now taking $(0,\dfrac{{2\pi }}{3})$
$(\dfrac{{2\pi }}{3} - \dfrac{\pi }{3}) = - 2(0 - \dfrac{\pi }{6})$
$\dfrac{\pi }{3} = \dfrac{\pi }{3}$
Hence $(0,\dfrac{{2\pi }}{3})$ is the correct option.
So, the correct answer is “Option B”.
Note:We need to know that if the slope of the line is $a$, then the slope of its normal will be $\dfrac{1}{a}$. Also that equation of the line passing through $(l,m)$ and slope $a$ is $(y - m) = a(x - l)$.
Complete step-by-step answer:
$f\left( x \right)$$ = {\tan ^{ - 1}}\left( {\sqrt {\dfrac{{1 + \sin x}}{{1 - \sin x}}} } \right)$ where $x \in \left( {0,\dfrac{\pi }{2}} \right)$$ - - - - - - (1)$
Consider $y = $$f(x)$$ = {\tan ^{ - 1}}\left( {\sqrt {\dfrac{{1 + \sin x}}{{1 - \sin x}}} } \right)$
Using $1 = {\sin ^2}x + {\cos ^2}x$ and $\sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$ we can write
$f(x) = {\tan ^{ - 1}}\sqrt {\dfrac{{{{\left( {\sin \dfrac{x}{2} + \cos \dfrac{x}{2}} \right)}^2}}}{{{{\left( {\sin \dfrac{x}{2} - \cos \dfrac{x}{2}} \right)}^2}}}} - - - - - - (2)$
$f(x) = {\tan ^{ - 1}}\sqrt {\dfrac{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2} + 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2} - 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}}} $
Using ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$ where $a = \sin \dfrac{x}{2},b = \cos \dfrac{x}{2}$
Now it is given that $x \in \left( {0,\dfrac{\pi }{2}} \right)$
$0 < x < \dfrac{\pi }{2}$
$0 < \dfrac{x}{2} < \dfrac{\pi }{4}$
Therefore for $\dfrac{x}{2} \in \left( {0,\dfrac{\pi }{4}} \right)$, we know that,
$\cos \dfrac{x}{2} > \sin \dfrac{x}{2}$
$\cos \dfrac{x}{2} - \sin \dfrac{x}{2} > 0- - - - - - (3)$
Now by Substituting the value of equation 3 in equation 2 we will get.
$f\left( x \right) = {\tan ^{ - 1}}\left( {\dfrac{{\sin \dfrac{x}{2} + \cos \dfrac{x}{2}}}{{\cos \dfrac{x}{2} - \sin \dfrac{x}{2}}}} \right)$
$f\left( x \right) = {\tan ^{ - 1}}\left( {\dfrac{{(\tan \dfrac{x}{2} + 1)\cos \dfrac{x}{2}}}{{\cos \dfrac{x}{2}(1 - \tan \dfrac{x}{2})}}} \right)$
$f\left( x \right) = {\tan ^{ - 1}}\left( {\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}.1}}} \right)$
Using $\tan \dfrac{\pi }{4} = 1$
$f\left( x \right) = {\tan ^{ - 1}}\left( {\dfrac{{\tan \dfrac{\pi }{4} + \tan \dfrac{x}{2}}}{{\tan \dfrac{\pi }{4} - \tan \dfrac{x}{2}.\tan \dfrac{\pi }{4}}}} \right)$
${\tan ^{ - 1}}\left( {\dfrac{{a + b}}{{1 - a.b}}} \right) = {\tan ^{ - 1}}a + {\tan ^{ - 1}}b$
$f\left( x \right) = {\tan ^{ - 1}}\left( {\tan \dfrac{\pi }{4}} \right) + {\tan ^{ - 1}}\left( {\tan \dfrac{x}{2}} \right)$
Now we use
$a = {\tan ^{ - 1}}\left( {\tan a} \right)$
$y = f\left( x \right) = \left( {\dfrac{\pi }{4}} \right) + \left( {\dfrac{x}{2}} \right) - - - - - (4)$
Now take derivative of (4) with respect to $x$,
$f'(x) = 0 + \dfrac{1}{2} = \dfrac{1}{2}$
So slope of the $y = f\left( x \right) = \dfrac{1}{2}$
Slope of line normal to $f(x) = - 2$
So according to the question,
We need to find the equation of the normal to $y = f\left( x \right)$ at $x = \dfrac{\pi }{6}$
Firstly we need to put $x = \dfrac{\pi }{6}$ in equation (4) and get the value of $y$
$y = f\left( {\dfrac{\pi }{6}} \right) = \left( {\dfrac{\pi }{4}} \right) + \left( {\dfrac{\pi }{{2.6}}} \right) = \dfrac{\pi }{3}$
$y = \dfrac{\pi }{3}$
So normal to $y = f(x)$ is at the point $\left( {\dfrac{\pi }{6},\dfrac{\pi }{3}} \right)$
So equation of the normal will be:
$(y - \dfrac{\pi }{3}) = - 2(y - \dfrac{\pi }{6}) - - - - - - (5)$
Now we have to check the options by putting them in this equation:
Taking $(0,0)$
$(0 - \dfrac{\pi }{3}) = - 2(0 - \dfrac{\pi }{6})$
$ - \dfrac{\pi }{3} \ne \dfrac{\pi }{3}$
So it is not satisfying.
Now taking $(0,\dfrac{{2\pi }}{3})$
$(\dfrac{{2\pi }}{3} - \dfrac{\pi }{3}) = - 2(0 - \dfrac{\pi }{6})$
$\dfrac{\pi }{3} = \dfrac{\pi }{3}$
Hence $(0,\dfrac{{2\pi }}{3})$ is the correct option.
So, the correct answer is “Option B”.
Note:We need to know that if the slope of the line is $a$, then the slope of its normal will be $\dfrac{1}{a}$. Also that equation of the line passing through $(l,m)$ and slope $a$ is $(y - m) = a(x - l)$.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
