Answer
Verified
500.1k+ views
Hint- Assume a $3 \times 4$ matrix
$ = \left[ {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}}&{{a_{14}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}}&{{a_{24}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}&{{a_{34}}}
\end{array}} \right]$
and find the value of every element by substituting the suitable values of i & j.
$\left( i \right){a_{ij}} = \dfrac{1}{2}\left| { - 3i + j} \right|$, in $3 \times 4$ matrix, number of rows and column are 3 and 4 respectively.
So, $i$ is for row and $j$ is for column, therefore
$i = 1,2,3{\text{ ;}} j = 1,2,3,4$
As you know modulus of any negative number is positive for examples$\left| { - a} \right| = a$, so, we use this property to evaluate the values of $\left( {{a_{11}},{a_{12}},....................,{a_{34}}} \right)$
$
{a_{11}} = \dfrac{1}{2}\left| { - 3 + 1} \right| = \dfrac{{\left| { - 2} \right|}}{2} = \dfrac{2}{2} = 1 \\
{a_{12}} = \dfrac{1}{2}\left| { - 3 + 2} \right| = \dfrac{{\left| { - 1} \right|}}{2} = \dfrac{1}{2} \\
{a_{13}} = \dfrac{1}{2}\left| { - 3 + 3} \right| = \dfrac{{\left| 0 \right|}}{2} = \dfrac{0}{2} = 0 \\
{a_{14}} = \dfrac{1}{2}\left| { - 3 + 4} \right| = \dfrac{{\left| 1 \right|}}{2} = \dfrac{1}{2} \\
{a_{21}} = \dfrac{1}{2}\left| { - 3 \times 2 + 1} \right| = \dfrac{{\left| { - 5} \right|}}{2} = \dfrac{5}{2} \\
{a_{22}} = \dfrac{1}{2}\left| { - 3 \times 2 + 2} \right| = \dfrac{{\left| { - 4} \right|}}{2} = \dfrac{4}{2} = 2 \\
{a_{23}} = \dfrac{1}{2}\left| { - 3 \times 2 + 3} \right| = \dfrac{{\left| { - 3} \right|}}{2} = \dfrac{3}{2} \\
{a_{24}} = \dfrac{1}{2}\left| { - 3 \times 2 + 4} \right| = \dfrac{{\left| { - 2} \right|}}{2} = \dfrac{2}{2} = 1 \\
{a_{31}} = \dfrac{1}{2}\left| { - 3 \times 3 + 1} \right| = \dfrac{{\left| { - 8} \right|}}{2} = \dfrac{8}{2} = 4 \\
{a_{32}} = \dfrac{1}{2}\left| { - 3 \times 3 + 2} \right| = \dfrac{{\left| { - 7} \right|}}{2} = \dfrac{7}{2} \\
{a_{33}} = \dfrac{1}{2}\left| { - 3 \times 3 + 3} \right| = \dfrac{{\left| { - 6} \right|}}{2} = \dfrac{6}{2} = 3 \\
{a_{34}} = \dfrac{1}{2}\left| { - 3 \times 3 + 4} \right| = \dfrac{{\left| { - 5} \right|}}{2} = \dfrac{5}{2} \\
$
So, the required $3 \times 4$ matrix is,
$ = \left[ {\begin{array}{*{20}{c}}
1&{\dfrac{1}{2}}&0&{\dfrac{1}{2}} \\
{\dfrac{5}{2}}&2&{\dfrac{3}{2}}&1 \\
4&{\dfrac{7}{2}}&3&{\dfrac{5}{2}}
\end{array}} \right]$
$\left( {ii} \right){a_{ij}} = 2i - j$
${a_{ij}} = 2i - j$, in $3 \times 4$ matrix, number of rows and columns are 3 and 4 respectively.
So, $i$ is for row and $j$ is for column, therefore
$i = 1,2,3{\text{ ;}}j = 1,2,3,4$
Now, evaluate the values of $\left( {{a_{11}},{a_{12}},....................,{a_{34}}} \right)$
$
{a_{11}} = 2 \times 1 - 1 = 1 \\
{a_{12}} = 2 \times 1 - 2 = 0 \\
{a_{13}} = 2 \times 1 - 3 = - 1 \\
{a_{14}} = 2 \times 1 - 4 = - 2 \\
{a_{21}} = 2 \times 2 - 1 = 3 \\
{a_{22}} = 2 \times 2 - 2 = 2 \\
{a_{23}} = 2 \times 2 - 3 = 1 \\
{a_{24}} = 2 \times 2 - 4 = 0 \\
{a_{31}} = 2 \times 3 - 1 = 5 \\
{a_{32}} = 2 \times 3 - 2 = 4 \\
{a_{33}} = 2 \times 3 - 3 = 3 \\
{a_{34}} = 2 \times 3 - 4 = 2 \\
$
So, the required $3 \times 4$ matrix
$ = \left[ {\begin{array}{*{20}{c}}
1&0&{ - 1}&{ - 2} \\
3&2&1&0 \\
5&4&3&2
\end{array}} \right]$
So, these are the required matrices.
Note: In these types of questions always remember that in an $m \times n$ matrix, the number of rows and columns are m and n respectively. Calculate all the elemental values of the matrix according to the given condition.
$ = \left[ {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}}&{{a_{14}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}}&{{a_{24}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}&{{a_{34}}}
\end{array}} \right]$
and find the value of every element by substituting the suitable values of i & j.
$\left( i \right){a_{ij}} = \dfrac{1}{2}\left| { - 3i + j} \right|$, in $3 \times 4$ matrix, number of rows and column are 3 and 4 respectively.
So, $i$ is for row and $j$ is for column, therefore
$i = 1,2,3{\text{ ;}} j = 1,2,3,4$
As you know modulus of any negative number is positive for examples$\left| { - a} \right| = a$, so, we use this property to evaluate the values of $\left( {{a_{11}},{a_{12}},....................,{a_{34}}} \right)$
$
{a_{11}} = \dfrac{1}{2}\left| { - 3 + 1} \right| = \dfrac{{\left| { - 2} \right|}}{2} = \dfrac{2}{2} = 1 \\
{a_{12}} = \dfrac{1}{2}\left| { - 3 + 2} \right| = \dfrac{{\left| { - 1} \right|}}{2} = \dfrac{1}{2} \\
{a_{13}} = \dfrac{1}{2}\left| { - 3 + 3} \right| = \dfrac{{\left| 0 \right|}}{2} = \dfrac{0}{2} = 0 \\
{a_{14}} = \dfrac{1}{2}\left| { - 3 + 4} \right| = \dfrac{{\left| 1 \right|}}{2} = \dfrac{1}{2} \\
{a_{21}} = \dfrac{1}{2}\left| { - 3 \times 2 + 1} \right| = \dfrac{{\left| { - 5} \right|}}{2} = \dfrac{5}{2} \\
{a_{22}} = \dfrac{1}{2}\left| { - 3 \times 2 + 2} \right| = \dfrac{{\left| { - 4} \right|}}{2} = \dfrac{4}{2} = 2 \\
{a_{23}} = \dfrac{1}{2}\left| { - 3 \times 2 + 3} \right| = \dfrac{{\left| { - 3} \right|}}{2} = \dfrac{3}{2} \\
{a_{24}} = \dfrac{1}{2}\left| { - 3 \times 2 + 4} \right| = \dfrac{{\left| { - 2} \right|}}{2} = \dfrac{2}{2} = 1 \\
{a_{31}} = \dfrac{1}{2}\left| { - 3 \times 3 + 1} \right| = \dfrac{{\left| { - 8} \right|}}{2} = \dfrac{8}{2} = 4 \\
{a_{32}} = \dfrac{1}{2}\left| { - 3 \times 3 + 2} \right| = \dfrac{{\left| { - 7} \right|}}{2} = \dfrac{7}{2} \\
{a_{33}} = \dfrac{1}{2}\left| { - 3 \times 3 + 3} \right| = \dfrac{{\left| { - 6} \right|}}{2} = \dfrac{6}{2} = 3 \\
{a_{34}} = \dfrac{1}{2}\left| { - 3 \times 3 + 4} \right| = \dfrac{{\left| { - 5} \right|}}{2} = \dfrac{5}{2} \\
$
So, the required $3 \times 4$ matrix is,
$ = \left[ {\begin{array}{*{20}{c}}
1&{\dfrac{1}{2}}&0&{\dfrac{1}{2}} \\
{\dfrac{5}{2}}&2&{\dfrac{3}{2}}&1 \\
4&{\dfrac{7}{2}}&3&{\dfrac{5}{2}}
\end{array}} \right]$
$\left( {ii} \right){a_{ij}} = 2i - j$
${a_{ij}} = 2i - j$, in $3 \times 4$ matrix, number of rows and columns are 3 and 4 respectively.
So, $i$ is for row and $j$ is for column, therefore
$i = 1,2,3{\text{ ;}}j = 1,2,3,4$
Now, evaluate the values of $\left( {{a_{11}},{a_{12}},....................,{a_{34}}} \right)$
$
{a_{11}} = 2 \times 1 - 1 = 1 \\
{a_{12}} = 2 \times 1 - 2 = 0 \\
{a_{13}} = 2 \times 1 - 3 = - 1 \\
{a_{14}} = 2 \times 1 - 4 = - 2 \\
{a_{21}} = 2 \times 2 - 1 = 3 \\
{a_{22}} = 2 \times 2 - 2 = 2 \\
{a_{23}} = 2 \times 2 - 3 = 1 \\
{a_{24}} = 2 \times 2 - 4 = 0 \\
{a_{31}} = 2 \times 3 - 1 = 5 \\
{a_{32}} = 2 \times 3 - 2 = 4 \\
{a_{33}} = 2 \times 3 - 3 = 3 \\
{a_{34}} = 2 \times 3 - 4 = 2 \\
$
So, the required $3 \times 4$ matrix
$ = \left[ {\begin{array}{*{20}{c}}
1&0&{ - 1}&{ - 2} \\
3&2&1&0 \\
5&4&3&2
\end{array}} \right]$
So, these are the required matrices.
Note: In these types of questions always remember that in an $m \times n$ matrix, the number of rows and columns are m and n respectively. Calculate all the elemental values of the matrix according to the given condition.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE