Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Construct the circumcircle and incircle of an equilateral ΔABC with side 6cm and center O. Find the ratio of radii of circumcircle and incircle.

Answer
VerifiedVerified
528.9k+ views
like imagedislike image
Hint: Draw a perpendicular bisector on the equilateral triangle which divides the sides of the equilateral triangle into two equal parts. Take their intersection point to draw a circumcircle and incircle. Now use trigonometric ratios in two different triangles for values of in-radius and circum-radius.

Complete step-by-step answer:
seo images


The pictorial representation of the given problem is shown above.
The equilateral triangle ABC with side 6 cm has a circumcircle and an incircle with center O and radii r1 and r2 respectively.
OB=r1cm, OD=r2cm
AE and CD are the perpendicular bisector of BC and AB respectively.
BE=CE=BD=AD=62=3cm
Since, FB is the bisector of ABC
FBC=FBA=6002=300
Because in equilateral triangle all angles are equal which is 600
Now, in ΔOBE, cos300 = BEOB=3r1
As we know cos300=32
r1=3cos300=332=63cm
Now in ΔOBD, tan300 = ODBD=r23
As we know tan300=13
r2=3tan300=3(13)=3cm
Now you have to calculate the ratio of radii circumcircle to incircle
r1r2=633=63×3=63=2cm
So, the required ratio of the radii is 2 cm.

Note: In such types of question first draw the pictorial representation of the given problem, then draw the perpendicular bisectors on the triangle which divide its sides into two equal parts, then apply basic trigonometric property and calculate the radii of the two circles, then divide them we will get the required answer.
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
calendar iconAcademic year 2025-26
language iconENGLISH
book iconUnlimited access till final school exam
tick
School Full course for CBSE students
PhysicsPhysics
ChemistryChemistry
MathsMaths
₹41,848 per year
Select and buy