Answer
Verified
501k+ views
Hint: Draw a perpendicular bisector on the equilateral triangle which divides the sides of the equilateral triangle into two equal parts. Take their intersection point to draw a circumcircle and incircle. Now use trigonometric ratios in two different triangles for values of in-radius and circum-radius.
Complete step-by-step answer:
The pictorial representation of the given problem is shown above.
The equilateral triangle ABC with side 6 cm has a circumcircle and an incircle with center O and radii ${r_1}$ and ${r_2}$ respectively.
$ \Rightarrow OB = {r_1}cm,{\text{ }}OD = {r_2}cm$
AE and CD are the perpendicular bisector of BC and AB respectively.
$ \Rightarrow BE = CE = BD = AD = \dfrac{6}{2} = 3cm$
Since, FB is the bisector of $\angle ABC$
$ \Rightarrow \angle FBC = \angle FBA = \dfrac{{{{60}^0}}}{2} = {30^0}$
Because in equilateral triangle all angles are equal which is ${60^0}$
Now, in $\Delta OBE,{\text{ cos3}}{{\text{0}}^0}{\text{ = }}\dfrac{{BE}}{{OB}} = \dfrac{3}{{{r_1}}}$
As we know ${\text{cos3}}{{\text{0}}^0} = \dfrac{{\sqrt 3 }}{2}$
$ \Rightarrow {r_1} = \dfrac{3}{{\cos {{30}^0}}} = \dfrac{3}{{\dfrac{{\sqrt 3 }}{2}}} = \dfrac{6}{{\sqrt 3 }}cm$
Now in $\Delta OBD,{\text{ tan3}}{{\text{0}}^0}{\text{ = }}\dfrac{{OD}}{{BD}} = \dfrac{{{r_2}}}{3}$
As we know ${\text{tan3}}{{\text{0}}^0} = \dfrac{1}{{\sqrt 3 }}$
$ \Rightarrow {r_2} = 3\tan {30^0} = 3\left( {\dfrac{1}{{\sqrt 3 }}} \right) = \sqrt 3 cm$
Now you have to calculate the ratio of radii circumcircle to incircle
$\dfrac{{{r_1}}}{{{r_2}}} = \dfrac{{\dfrac{6}{{\sqrt 3 }}}}{{\sqrt 3 }} = \dfrac{6}{{\sqrt 3 \times \sqrt 3 }} = \dfrac{6}{3} = 2cm$
So, the required ratio of the radii is 2 cm.
Note: In such types of question first draw the pictorial representation of the given problem, then draw the perpendicular bisectors on the triangle which divide its sides into two equal parts, then apply basic trigonometric property and calculate the radii of the two circles, then divide them we will get the required answer.
Complete step-by-step answer:
The pictorial representation of the given problem is shown above.
The equilateral triangle ABC with side 6 cm has a circumcircle and an incircle with center O and radii ${r_1}$ and ${r_2}$ respectively.
$ \Rightarrow OB = {r_1}cm,{\text{ }}OD = {r_2}cm$
AE and CD are the perpendicular bisector of BC and AB respectively.
$ \Rightarrow BE = CE = BD = AD = \dfrac{6}{2} = 3cm$
Since, FB is the bisector of $\angle ABC$
$ \Rightarrow \angle FBC = \angle FBA = \dfrac{{{{60}^0}}}{2} = {30^0}$
Because in equilateral triangle all angles are equal which is ${60^0}$
Now, in $\Delta OBE,{\text{ cos3}}{{\text{0}}^0}{\text{ = }}\dfrac{{BE}}{{OB}} = \dfrac{3}{{{r_1}}}$
As we know ${\text{cos3}}{{\text{0}}^0} = \dfrac{{\sqrt 3 }}{2}$
$ \Rightarrow {r_1} = \dfrac{3}{{\cos {{30}^0}}} = \dfrac{3}{{\dfrac{{\sqrt 3 }}{2}}} = \dfrac{6}{{\sqrt 3 }}cm$
Now in $\Delta OBD,{\text{ tan3}}{{\text{0}}^0}{\text{ = }}\dfrac{{OD}}{{BD}} = \dfrac{{{r_2}}}{3}$
As we know ${\text{tan3}}{{\text{0}}^0} = \dfrac{1}{{\sqrt 3 }}$
$ \Rightarrow {r_2} = 3\tan {30^0} = 3\left( {\dfrac{1}{{\sqrt 3 }}} \right) = \sqrt 3 cm$
Now you have to calculate the ratio of radii circumcircle to incircle
$\dfrac{{{r_1}}}{{{r_2}}} = \dfrac{{\dfrac{6}{{\sqrt 3 }}}}{{\sqrt 3 }} = \dfrac{6}{{\sqrt 3 \times \sqrt 3 }} = \dfrac{6}{3} = 2cm$
So, the required ratio of the radii is 2 cm.
Note: In such types of question first draw the pictorial representation of the given problem, then draw the perpendicular bisectors on the triangle which divide its sides into two equal parts, then apply basic trigonometric property and calculate the radii of the two circles, then divide them we will get the required answer.
Recently Updated Pages
For a simple pendulum a graph is plotted between its class 11 physics JEE_Main
A particle executes simple harmonic motion with a frequency class 11 physics JEE_Main
At what temperature will the total KE of 03 mol of class 11 chemistry JEE_Main
ABC is a right angled triangular plate of uniform thickness class 11 phy sec 1 JEE_Main
The linear velocity perpendicular to the radius vector class 11 physics JEE_Main
The normality of 03 M phosphorus acid H3PO3 is class 11 chemistry NEET_UG
Trending doubts
Who was the Governor general of India at the time of class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
What organs are located on the left side of your body class 11 biology CBSE