Answer
Verified
420.9k+ views
Hint: A complex number in the polar form is represented in terms of the distance from the origin, $r$ and the angle made with the x-axis, $\theta $. And in the rectangular form it is represented in the form of the rectangular coordinates, x and y. Considering a complex number in the x-y plane we can determine the relation between its polar and the rectangular coordinates. On substituting the relation into the given equation $r\cos \left( \theta \right)=4$, we can write the required rectangular form.
Complete step by step answer:
In the above question, we have been given a complex number in the polar form. We know that a complex number can be represented in two forms, which are the polar form and the rectangular form. In the polar form, we represent a complex number by its two parameters; first one is its distance from the origin, $r$ and the second one is the angle made by it with the positive direction of the x axis, $\theta $. While in the rectangular form, the complex number is represented in the form of its polar coordinates; $x$ and $y$.
Consider a complex number represented by a point P in the x-y plane as shown in the figure below.
For representing it in the rectangular form, we need to determine its x and y coordinates. In the triangle OAP, we have
$\begin{align}
& \Rightarrow \cos \theta =\dfrac{OA}{OP} \\
& \Rightarrow \cos \theta =\dfrac{OA}{r} \\
\end{align}$
Multiplying both sides by $r$ we get
$\Rightarrow OA=r\cos \theta $
From the above figure, the x-coordinate of the point P is equal to $OA$. SO we have
$\Rightarrow x=r\cos \theta .........(i)$
Similarly we have
$\begin{align}
& \Rightarrow \sin \theta =\dfrac{PA}{OP} \\
& \Rightarrow \sin \theta =\dfrac{PA}{r} \\
& \Rightarrow PA=r\sin \theta \\
& \Rightarrow y=r\sin \theta ........(ii) \\
\end{align}$
Equations (i) and (ii) together are the required relations between the polar and the rectangular coordinates of the complex number.
Now, in the given question we have
$r\cos \left( \theta \right)=4$
Substituting (i) in the above equation, we get
$\begin{align}
& \Rightarrow r\left( \dfrac{x}{r} \right)=4 \\
& \Rightarrow x=4 \\
\end{align}$
This is the required rectangular form of $r\cos \left( \theta \right)=4$.
Note: In the above question, we had no information regarding the y-coordinate of the complex number. This occurred because in the polar form we have two variables, $r$ and $\theta $. But we were given only a single equation, that is $r\cos \left( \theta \right)=4$. So we could only determine the x-coordinate of the complex number. Otherwise, in the rectangular form the complex number is written as $x+iy$.
Complete step by step answer:
In the above question, we have been given a complex number in the polar form. We know that a complex number can be represented in two forms, which are the polar form and the rectangular form. In the polar form, we represent a complex number by its two parameters; first one is its distance from the origin, $r$ and the second one is the angle made by it with the positive direction of the x axis, $\theta $. While in the rectangular form, the complex number is represented in the form of its polar coordinates; $x$ and $y$.
Consider a complex number represented by a point P in the x-y plane as shown in the figure below.
For representing it in the rectangular form, we need to determine its x and y coordinates. In the triangle OAP, we have
$\begin{align}
& \Rightarrow \cos \theta =\dfrac{OA}{OP} \\
& \Rightarrow \cos \theta =\dfrac{OA}{r} \\
\end{align}$
Multiplying both sides by $r$ we get
$\Rightarrow OA=r\cos \theta $
From the above figure, the x-coordinate of the point P is equal to $OA$. SO we have
$\Rightarrow x=r\cos \theta .........(i)$
Similarly we have
$\begin{align}
& \Rightarrow \sin \theta =\dfrac{PA}{OP} \\
& \Rightarrow \sin \theta =\dfrac{PA}{r} \\
& \Rightarrow PA=r\sin \theta \\
& \Rightarrow y=r\sin \theta ........(ii) \\
\end{align}$
Equations (i) and (ii) together are the required relations between the polar and the rectangular coordinates of the complex number.
Now, in the given question we have
$r\cos \left( \theta \right)=4$
Substituting (i) in the above equation, we get
$\begin{align}
& \Rightarrow r\left( \dfrac{x}{r} \right)=4 \\
& \Rightarrow x=4 \\
\end{align}$
This is the required rectangular form of $r\cos \left( \theta \right)=4$.
Note: In the above question, we had no information regarding the y-coordinate of the complex number. This occurred because in the polar form we have two variables, $r$ and $\theta $. But we were given only a single equation, that is $r\cos \left( \theta \right)=4$. So we could only determine the x-coordinate of the complex number. Otherwise, in the rectangular form the complex number is written as $x+iy$.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The only snake that builds a nest is a Krait b King class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE
Which places in India experience sunrise first and class 9 social science CBSE