
Convert the complex number $z = \dfrac{{2 - \sqrt 3 i}}{{5 - \sqrt 3 i}}$ in polar form.
Answer
582.9k+ views
Hint: First, multiply and divide by the conjugate of the denominator to remove the imaginary part from the denominator and simplify it. After that find the modulus of z. Then, find the argument of z. then substitute the value in $z = r\left( {\cos \theta + i\sin \theta } \right)$ to get the polar form.
Complete step by step answer:
Given: - $z = \dfrac{{2 - \sqrt 3 i}}{{5 - \sqrt 3 i}}$
Multiply and divide z with the conjugate of the denominator,
$\Rightarrow z = \dfrac{{2 - \sqrt 3 i}}{{5 - \sqrt 3 i}} \times \dfrac{{5 + \sqrt 3 i}}{{5 + \sqrt 3 i}}$
Multiply the terms on the right to get real numbers in the denominator,
$\Rightarrow z = \dfrac{{10 - 3{i^2} - 5\sqrt 3 i + 2\sqrt 3 i}}{{25 - 3{i^2}}}$
As we know ${i^2} = - 1$, substitute the value in the equation,
$\Rightarrow z = \dfrac{{10 - 3\left( { - 1} \right) - 5\sqrt 3 i + 2\sqrt 3 i}}{{25 - 3\left( { - 1} \right)}}$
Open the brackets and add the like terms,
$\Rightarrow z = \dfrac{{13 - 3\sqrt 3 i}}{{28}}$
Separate the real part and imaginary parts,
$\Rightarrow z = \dfrac{{13}}{{28}} - i\dfrac{{3\sqrt 3 }}{{28}}$
The formula of modulus is,
$\Rightarrow \left| z \right| = \sqrt {{a^2} + {b^2}} $
Here $a = \dfrac{{13}}{{28}}$ and $b = - \dfrac{{3\sqrt 3 }}{{28}}$. Then,
$\Rightarrow \left| z \right| = \sqrt {{{\left( {\dfrac{{13}}{{28}}} \right)}^2} + {{\left( { - \dfrac{{3\sqrt 3 }}{{28}}} \right)}^2}} $
Square the terms in the bracket,
$\Rightarrow \left| z \right| = \sqrt {\dfrac{{169}}{{784}} + \dfrac{{27}}{{784}}} $
Since the denominator is the same. So, add the numerator,
$\Rightarrow \left| z \right| = \sqrt {\dfrac{{196}}{{784}}} $
Cancel out the common factors from the numerator and denominator,
$\Rightarrow \left| z \right| = \sqrt {\dfrac{1}{4}} $
Take square root on the right side,
$\Rightarrow \left| z \right| = \dfrac{1}{2}$
Now, $\tan \alpha = \left| {\dfrac{b}{a}} \right|$. Then,
$\Rightarrow \tan \alpha = \left| {\dfrac{{ - \dfrac{{3\sqrt 3 }}{{28}}}}{{\dfrac{{13}}{{28}}}}} \right|$
Cancel out the common factor,
$\Rightarrow \tan \alpha = \dfrac{{3\sqrt 3 }}{{13}}$
Take ${\tan ^{ - 1}}$ on both sides,
$\Rightarrow \alpha = {\tan ^{ - 1}}\dfrac{{3\sqrt 3 }}{{13}}$
As the real part of the complex number is positive and the imaginary part is negative. The number will lie in 4th quadrant. Then,
$\Rightarrow \arg \left( z \right) = - \alpha $
Substitute the value of $\alpha $,
$\Rightarrow \arg \left( z \right) = - {\tan ^{ - 1}}\left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)$
So, the complex number in the polar form will be,
$\Rightarrow z = r\left( {\cos \theta + i\sin \theta } \right)$
where, $r = \left| z \right|$ and $\theta = \arg \left( z \right)$
Then,
$\Rightarrow z = \dfrac{1}{2}\left[ {\cos \left( { - \tan \left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)} \right) + i\sin \left( { - \tan \left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)} \right)} \right]$
Hence, the polar form of the complex number is $z = \dfrac{1}{2}\left[ {\cos \left( { - \tan \left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)} \right) + i\sin \left( { - \tan \left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)} \right)} \right]$.
Note:
The complex numbers are the field C of numbers of the form $x + iy$, where x and y are real numbers and i is the imaginary unit equal to the square root of -1. When a single letter z is used to denote a complex number. It is denoted as $z = x + iy$.
Complete step by step answer:
Given: - $z = \dfrac{{2 - \sqrt 3 i}}{{5 - \sqrt 3 i}}$
Multiply and divide z with the conjugate of the denominator,
$\Rightarrow z = \dfrac{{2 - \sqrt 3 i}}{{5 - \sqrt 3 i}} \times \dfrac{{5 + \sqrt 3 i}}{{5 + \sqrt 3 i}}$
Multiply the terms on the right to get real numbers in the denominator,
$\Rightarrow z = \dfrac{{10 - 3{i^2} - 5\sqrt 3 i + 2\sqrt 3 i}}{{25 - 3{i^2}}}$
As we know ${i^2} = - 1$, substitute the value in the equation,
$\Rightarrow z = \dfrac{{10 - 3\left( { - 1} \right) - 5\sqrt 3 i + 2\sqrt 3 i}}{{25 - 3\left( { - 1} \right)}}$
Open the brackets and add the like terms,
$\Rightarrow z = \dfrac{{13 - 3\sqrt 3 i}}{{28}}$
Separate the real part and imaginary parts,
$\Rightarrow z = \dfrac{{13}}{{28}} - i\dfrac{{3\sqrt 3 }}{{28}}$
The formula of modulus is,
$\Rightarrow \left| z \right| = \sqrt {{a^2} + {b^2}} $
Here $a = \dfrac{{13}}{{28}}$ and $b = - \dfrac{{3\sqrt 3 }}{{28}}$. Then,
$\Rightarrow \left| z \right| = \sqrt {{{\left( {\dfrac{{13}}{{28}}} \right)}^2} + {{\left( { - \dfrac{{3\sqrt 3 }}{{28}}} \right)}^2}} $
Square the terms in the bracket,
$\Rightarrow \left| z \right| = \sqrt {\dfrac{{169}}{{784}} + \dfrac{{27}}{{784}}} $
Since the denominator is the same. So, add the numerator,
$\Rightarrow \left| z \right| = \sqrt {\dfrac{{196}}{{784}}} $
Cancel out the common factors from the numerator and denominator,
$\Rightarrow \left| z \right| = \sqrt {\dfrac{1}{4}} $
Take square root on the right side,
$\Rightarrow \left| z \right| = \dfrac{1}{2}$
Now, $\tan \alpha = \left| {\dfrac{b}{a}} \right|$. Then,
$\Rightarrow \tan \alpha = \left| {\dfrac{{ - \dfrac{{3\sqrt 3 }}{{28}}}}{{\dfrac{{13}}{{28}}}}} \right|$
Cancel out the common factor,
$\Rightarrow \tan \alpha = \dfrac{{3\sqrt 3 }}{{13}}$
Take ${\tan ^{ - 1}}$ on both sides,
$\Rightarrow \alpha = {\tan ^{ - 1}}\dfrac{{3\sqrt 3 }}{{13}}$
As the real part of the complex number is positive and the imaginary part is negative. The number will lie in 4th quadrant. Then,
$\Rightarrow \arg \left( z \right) = - \alpha $
Substitute the value of $\alpha $,
$\Rightarrow \arg \left( z \right) = - {\tan ^{ - 1}}\left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)$
So, the complex number in the polar form will be,
$\Rightarrow z = r\left( {\cos \theta + i\sin \theta } \right)$
where, $r = \left| z \right|$ and $\theta = \arg \left( z \right)$
Then,
$\Rightarrow z = \dfrac{1}{2}\left[ {\cos \left( { - \tan \left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)} \right) + i\sin \left( { - \tan \left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)} \right)} \right]$
Hence, the polar form of the complex number is $z = \dfrac{1}{2}\left[ {\cos \left( { - \tan \left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)} \right) + i\sin \left( { - \tan \left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)} \right)} \right]$.
Note:
The complex numbers are the field C of numbers of the form $x + iy$, where x and y are real numbers and i is the imaginary unit equal to the square root of -1. When a single letter z is used to denote a complex number. It is denoted as $z = x + iy$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

