Answer
Verified
460.5k+ views
Hint: First, multiply and divide by the conjugate of the denominator to remove the imaginary part from the denominator and simplify it. After that find the modulus of z. Then, find the argument of z. then substitute the value in $z = r\left( {\cos \theta + i\sin \theta } \right)$ to get the polar form.
Complete step by step answer:
Given: - $z = \dfrac{{2 - \sqrt 3 i}}{{5 - \sqrt 3 i}}$
Multiply and divide z with the conjugate of the denominator,
$\Rightarrow z = \dfrac{{2 - \sqrt 3 i}}{{5 - \sqrt 3 i}} \times \dfrac{{5 + \sqrt 3 i}}{{5 + \sqrt 3 i}}$
Multiply the terms on the right to get real numbers in the denominator,
$\Rightarrow z = \dfrac{{10 - 3{i^2} - 5\sqrt 3 i + 2\sqrt 3 i}}{{25 - 3{i^2}}}$
As we know ${i^2} = - 1$, substitute the value in the equation,
$\Rightarrow z = \dfrac{{10 - 3\left( { - 1} \right) - 5\sqrt 3 i + 2\sqrt 3 i}}{{25 - 3\left( { - 1} \right)}}$
Open the brackets and add the like terms,
$\Rightarrow z = \dfrac{{13 - 3\sqrt 3 i}}{{28}}$
Separate the real part and imaginary parts,
$\Rightarrow z = \dfrac{{13}}{{28}} - i\dfrac{{3\sqrt 3 }}{{28}}$
The formula of modulus is,
$\Rightarrow \left| z \right| = \sqrt {{a^2} + {b^2}} $
Here $a = \dfrac{{13}}{{28}}$ and $b = - \dfrac{{3\sqrt 3 }}{{28}}$. Then,
$\Rightarrow \left| z \right| = \sqrt {{{\left( {\dfrac{{13}}{{28}}} \right)}^2} + {{\left( { - \dfrac{{3\sqrt 3 }}{{28}}} \right)}^2}} $
Square the terms in the bracket,
$\Rightarrow \left| z \right| = \sqrt {\dfrac{{169}}{{784}} + \dfrac{{27}}{{784}}} $
Since the denominator is the same. So, add the numerator,
$\Rightarrow \left| z \right| = \sqrt {\dfrac{{196}}{{784}}} $
Cancel out the common factors from the numerator and denominator,
$\Rightarrow \left| z \right| = \sqrt {\dfrac{1}{4}} $
Take square root on the right side,
$\Rightarrow \left| z \right| = \dfrac{1}{2}$
Now, $\tan \alpha = \left| {\dfrac{b}{a}} \right|$. Then,
$\Rightarrow \tan \alpha = \left| {\dfrac{{ - \dfrac{{3\sqrt 3 }}{{28}}}}{{\dfrac{{13}}{{28}}}}} \right|$
Cancel out the common factor,
$\Rightarrow \tan \alpha = \dfrac{{3\sqrt 3 }}{{13}}$
Take ${\tan ^{ - 1}}$ on both sides,
$\Rightarrow \alpha = {\tan ^{ - 1}}\dfrac{{3\sqrt 3 }}{{13}}$
As the real part of the complex number is positive and the imaginary part is negative. The number will lie in 4th quadrant. Then,
$\Rightarrow \arg \left( z \right) = - \alpha $
Substitute the value of $\alpha $,
$\Rightarrow \arg \left( z \right) = - {\tan ^{ - 1}}\left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)$
So, the complex number in the polar form will be,
$\Rightarrow z = r\left( {\cos \theta + i\sin \theta } \right)$
where, $r = \left| z \right|$ and $\theta = \arg \left( z \right)$
Then,
$\Rightarrow z = \dfrac{1}{2}\left[ {\cos \left( { - \tan \left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)} \right) + i\sin \left( { - \tan \left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)} \right)} \right]$
Hence, the polar form of the complex number is $z = \dfrac{1}{2}\left[ {\cos \left( { - \tan \left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)} \right) + i\sin \left( { - \tan \left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)} \right)} \right]$.
Note:
The complex numbers are the field C of numbers of the form $x + iy$, where x and y are real numbers and i is the imaginary unit equal to the square root of -1. When a single letter z is used to denote a complex number. It is denoted as $z = x + iy$.
Complete step by step answer:
Given: - $z = \dfrac{{2 - \sqrt 3 i}}{{5 - \sqrt 3 i}}$
Multiply and divide z with the conjugate of the denominator,
$\Rightarrow z = \dfrac{{2 - \sqrt 3 i}}{{5 - \sqrt 3 i}} \times \dfrac{{5 + \sqrt 3 i}}{{5 + \sqrt 3 i}}$
Multiply the terms on the right to get real numbers in the denominator,
$\Rightarrow z = \dfrac{{10 - 3{i^2} - 5\sqrt 3 i + 2\sqrt 3 i}}{{25 - 3{i^2}}}$
As we know ${i^2} = - 1$, substitute the value in the equation,
$\Rightarrow z = \dfrac{{10 - 3\left( { - 1} \right) - 5\sqrt 3 i + 2\sqrt 3 i}}{{25 - 3\left( { - 1} \right)}}$
Open the brackets and add the like terms,
$\Rightarrow z = \dfrac{{13 - 3\sqrt 3 i}}{{28}}$
Separate the real part and imaginary parts,
$\Rightarrow z = \dfrac{{13}}{{28}} - i\dfrac{{3\sqrt 3 }}{{28}}$
The formula of modulus is,
$\Rightarrow \left| z \right| = \sqrt {{a^2} + {b^2}} $
Here $a = \dfrac{{13}}{{28}}$ and $b = - \dfrac{{3\sqrt 3 }}{{28}}$. Then,
$\Rightarrow \left| z \right| = \sqrt {{{\left( {\dfrac{{13}}{{28}}} \right)}^2} + {{\left( { - \dfrac{{3\sqrt 3 }}{{28}}} \right)}^2}} $
Square the terms in the bracket,
$\Rightarrow \left| z \right| = \sqrt {\dfrac{{169}}{{784}} + \dfrac{{27}}{{784}}} $
Since the denominator is the same. So, add the numerator,
$\Rightarrow \left| z \right| = \sqrt {\dfrac{{196}}{{784}}} $
Cancel out the common factors from the numerator and denominator,
$\Rightarrow \left| z \right| = \sqrt {\dfrac{1}{4}} $
Take square root on the right side,
$\Rightarrow \left| z \right| = \dfrac{1}{2}$
Now, $\tan \alpha = \left| {\dfrac{b}{a}} \right|$. Then,
$\Rightarrow \tan \alpha = \left| {\dfrac{{ - \dfrac{{3\sqrt 3 }}{{28}}}}{{\dfrac{{13}}{{28}}}}} \right|$
Cancel out the common factor,
$\Rightarrow \tan \alpha = \dfrac{{3\sqrt 3 }}{{13}}$
Take ${\tan ^{ - 1}}$ on both sides,
$\Rightarrow \alpha = {\tan ^{ - 1}}\dfrac{{3\sqrt 3 }}{{13}}$
As the real part of the complex number is positive and the imaginary part is negative. The number will lie in 4th quadrant. Then,
$\Rightarrow \arg \left( z \right) = - \alpha $
Substitute the value of $\alpha $,
$\Rightarrow \arg \left( z \right) = - {\tan ^{ - 1}}\left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)$
So, the complex number in the polar form will be,
$\Rightarrow z = r\left( {\cos \theta + i\sin \theta } \right)$
where, $r = \left| z \right|$ and $\theta = \arg \left( z \right)$
Then,
$\Rightarrow z = \dfrac{1}{2}\left[ {\cos \left( { - \tan \left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)} \right) + i\sin \left( { - \tan \left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)} \right)} \right]$
Hence, the polar form of the complex number is $z = \dfrac{1}{2}\left[ {\cos \left( { - \tan \left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)} \right) + i\sin \left( { - \tan \left( {\dfrac{{3\sqrt 3 }}{{13}}} \right)} \right)} \right]$.
Note:
The complex numbers are the field C of numbers of the form $x + iy$, where x and y are real numbers and i is the imaginary unit equal to the square root of -1. When a single letter z is used to denote a complex number. It is denoted as $z = x + iy$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE