Answer
Verified
498.9k+ views
Hint- In this problem statement we have to convert the given recurring decimal to a fraction. First let’s talk about a recurring decimal. A recurring decimal also known as a repeating decimal basically refers to a number whose digits repeats till infinite times after a regular interval of time. So in order to convert it into fraction simply consider it equal to a variable and proceed, this will help to reach the answer.
Complete step-by-step answer:
Now we have to convert recurring decimal $0.\overline {35} $ into fraction.
Let x= $0.\overline {35} $…………. (1)
Multiplying with 100 both the side of equation (1) we get,
100x=$35.\overline {35} $…………… (2)
Now we can write $35.\overline {35} = 35 + 0.\overline {35} $
So equation (2) gets changed to
$100x = 35 + 0.\overline {35} $
Now using equation (1) we get,
$ \Rightarrow 100x = 35 + x$
On simplifying further we get,
$\begin{gathered}
99x = 35 \\
\Rightarrow x = \dfrac{{35}}{{99}} \\
\end{gathered} $
Hence the fraction conversion of $0.\overline {35} $ is $\dfrac{{35}}{{99}}$.
Note – Whenever we face such types of problems the key point is to simplify the fraction conversion for the given recurring number as a variable, then proper simplification of this equation will help you get on the right track to solve for that variable, this will give the fraction conversion for the recurring number.
Complete step-by-step answer:
Now we have to convert recurring decimal $0.\overline {35} $ into fraction.
Let x= $0.\overline {35} $…………. (1)
Multiplying with 100 both the side of equation (1) we get,
100x=$35.\overline {35} $…………… (2)
Now we can write $35.\overline {35} = 35 + 0.\overline {35} $
So equation (2) gets changed to
$100x = 35 + 0.\overline {35} $
Now using equation (1) we get,
$ \Rightarrow 100x = 35 + x$
On simplifying further we get,
$\begin{gathered}
99x = 35 \\
\Rightarrow x = \dfrac{{35}}{{99}} \\
\end{gathered} $
Hence the fraction conversion of $0.\overline {35} $ is $\dfrac{{35}}{{99}}$.
Note – Whenever we face such types of problems the key point is to simplify the fraction conversion for the given recurring number as a variable, then proper simplification of this equation will help you get on the right track to solve for that variable, this will give the fraction conversion for the recurring number.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE