
How do you create a 16 point unit circle that ranges from 0 to 8pi?
Answer
457.5k+ views
Hint: Create the circle of range $\left( 0,2\pi \right)$ instead of $\left( 0,8\pi \right)$ as both are same in case of a circle and $2\pi $is the minimum range for a circle. Plot 16 points by choosing 16 different angles. Choose the angles in such a way that their sine and cosine values are known.
Complete step by step answer:
A circle that ranges from 0 to $8\pi $, is the same as the circle ranges from 0 to $2\pi $because each rotation from one quadrant to another around the coordinate axes is $\dfrac{\pi }{2}$. For a complete circle it will be a complete rotation around 4 quadrants. Hence range will be $\dfrac{\pi }{2}\times 4=2\pi $.
So, to create a circle that ranges from 0 to $8\pi $, we have to create a circle ranging from 0 to $2\pi $.
Now for 16 points we have to consider 16 different angles.
The sine and cosine values of the angles can be taken from the given table
For other angles we just have to change the sign as per the quadrant.
So, the points are
$\begin{align}
& \left( \cos {{0}^{\circ }},\sin {{0}^{\circ }} \right)=\left( 1,0 \right) \\
& \left( \cos {{30}^{\circ }},\sin {{30}^{\circ }} \right)=\left( \dfrac{\sqrt{3}}{2},\dfrac{1}{2} \right) \\
& \left( \cos {{45}^{\circ }},\sin {{45}^{\circ }} \right)=\left( \dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}} \right) \\
& \left( \cos {{60}^{\circ }},\sin {{60}^{\circ }} \right)=\left( \dfrac{1}{2},\dfrac{\sqrt{3}}{2} \right) \\
& \left( \cos {{90}^{\circ }},\sin {{90}^{\circ }} \right)=\left( 0,1 \right) \\
& \left( \cos {{120}^{\circ }},\sin {{120}^{\circ }} \right)=\left( -\dfrac{1}{2},\dfrac{\sqrt{3}}{2} \right) \\
& \left( \cos {{135}^{\circ }},\sin {{135}^{\circ }} \right)=\left( -\dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}} \right) \\
& \left( \cos {{150}^{\circ }},\sin {{150}^{\circ }} \right)=\left( -\dfrac{\sqrt{3}}{2},\dfrac{1}{2} \right) \\
& \left( \cos {{180}^{\circ }},\sin {{180}^{\circ }} \right)=\left( -1,0 \right) \\
& \left( \cos {{210}^{\circ }},\sin {{210}^{\circ }} \right)=\left( -\dfrac{\sqrt{3}}{2},-\dfrac{1}{2} \right) \\
& \left( \cos {{225}^{\circ }},\sin {{225}^{\circ }} \right)=\left( -\dfrac{1}{\sqrt{2}},-\dfrac{1}{\sqrt{2}} \right) \\
& \left( \cos {{240}^{\circ }},\sin {{240}^{\circ }} \right)=\left( -\dfrac{1}{2},-\dfrac{\sqrt{3}}{2} \right) \\
& \left( \cos {{270}^{\circ }},\sin {{270}^{\circ }} \right)=\left( 0,-1 \right) \\
& \left( \cos {{300}^{\circ }},\sin {{300}^{\circ }} \right)=\left( \dfrac{1}{2},-\dfrac{\sqrt{3}}{2} \right) \\
& \left( \cos {{315}^{\circ }},\sin {{315}^{\circ }} \right)=\left( \dfrac{1}{\sqrt{2}},-\dfrac{1}{\sqrt{2}} \right) \\
& \left( \cos {{330}^{\circ }},\sin {{330}^{\circ }} \right)=\left( \dfrac{\sqrt{3}}{2},-\dfrac{1}{2} \right) \\
& \left( \cos {{360}^{\circ }},\sin {{360}^{\circ }} \right)=\left( 1,0 \right) \\
\end{align}$
Note:
The angels should be chosen in such a way that their sine and cosine values are known or can be obtained easily. The 16 equal angle difference i.e. $\dfrac{{{360}^{\circ }}}{16}={{22.5}^{\circ }}$should be avoided because there will be complexity in calculation. For sine and cosine values of angles more than ${{90}^{\circ }}$, ASTC rule can be used.
Complete step by step answer:
A circle that ranges from 0 to $8\pi $, is the same as the circle ranges from 0 to $2\pi $because each rotation from one quadrant to another around the coordinate axes is $\dfrac{\pi }{2}$. For a complete circle it will be a complete rotation around 4 quadrants. Hence range will be $\dfrac{\pi }{2}\times 4=2\pi $.
So, to create a circle that ranges from 0 to $8\pi $, we have to create a circle ranging from 0 to $2\pi $.
Now for 16 points we have to consider 16 different angles.
The sine and cosine values of the angles can be taken from the given table
angle | Cosine value | Sine value |
${{0}^{\circ }}$ | 0 | 1 |
${{30}^{\circ }}$ | $\dfrac{\sqrt{3}}{2}$ | $\dfrac{1}{2}$ |
${{45}^{\circ }}$ | $\dfrac{1}{\sqrt{2}}$ | $\dfrac{1}{\sqrt{2}}$ |
${{60}^{\circ }}$ | $\dfrac{1}{2}$ | $\dfrac{\sqrt{3}}{2}$ |
${{90}^{\circ }}$ | 1 | 0 |
For other angles we just have to change the sign as per the quadrant.
So, the points are
$\begin{align}
& \left( \cos {{0}^{\circ }},\sin {{0}^{\circ }} \right)=\left( 1,0 \right) \\
& \left( \cos {{30}^{\circ }},\sin {{30}^{\circ }} \right)=\left( \dfrac{\sqrt{3}}{2},\dfrac{1}{2} \right) \\
& \left( \cos {{45}^{\circ }},\sin {{45}^{\circ }} \right)=\left( \dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}} \right) \\
& \left( \cos {{60}^{\circ }},\sin {{60}^{\circ }} \right)=\left( \dfrac{1}{2},\dfrac{\sqrt{3}}{2} \right) \\
& \left( \cos {{90}^{\circ }},\sin {{90}^{\circ }} \right)=\left( 0,1 \right) \\
& \left( \cos {{120}^{\circ }},\sin {{120}^{\circ }} \right)=\left( -\dfrac{1}{2},\dfrac{\sqrt{3}}{2} \right) \\
& \left( \cos {{135}^{\circ }},\sin {{135}^{\circ }} \right)=\left( -\dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}} \right) \\
& \left( \cos {{150}^{\circ }},\sin {{150}^{\circ }} \right)=\left( -\dfrac{\sqrt{3}}{2},\dfrac{1}{2} \right) \\
& \left( \cos {{180}^{\circ }},\sin {{180}^{\circ }} \right)=\left( -1,0 \right) \\
& \left( \cos {{210}^{\circ }},\sin {{210}^{\circ }} \right)=\left( -\dfrac{\sqrt{3}}{2},-\dfrac{1}{2} \right) \\
& \left( \cos {{225}^{\circ }},\sin {{225}^{\circ }} \right)=\left( -\dfrac{1}{\sqrt{2}},-\dfrac{1}{\sqrt{2}} \right) \\
& \left( \cos {{240}^{\circ }},\sin {{240}^{\circ }} \right)=\left( -\dfrac{1}{2},-\dfrac{\sqrt{3}}{2} \right) \\
& \left( \cos {{270}^{\circ }},\sin {{270}^{\circ }} \right)=\left( 0,-1 \right) \\
& \left( \cos {{300}^{\circ }},\sin {{300}^{\circ }} \right)=\left( \dfrac{1}{2},-\dfrac{\sqrt{3}}{2} \right) \\
& \left( \cos {{315}^{\circ }},\sin {{315}^{\circ }} \right)=\left( \dfrac{1}{\sqrt{2}},-\dfrac{1}{\sqrt{2}} \right) \\
& \left( \cos {{330}^{\circ }},\sin {{330}^{\circ }} \right)=\left( \dfrac{\sqrt{3}}{2},-\dfrac{1}{2} \right) \\
& \left( \cos {{360}^{\circ }},\sin {{360}^{\circ }} \right)=\left( 1,0 \right) \\
\end{align}$

Note:
The angels should be chosen in such a way that their sine and cosine values are known or can be obtained easily. The 16 equal angle difference i.e. $\dfrac{{{360}^{\circ }}}{16}={{22.5}^{\circ }}$should be avoided because there will be complexity in calculation. For sine and cosine values of angles more than ${{90}^{\circ }}$, ASTC rule can be used.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Why was the Vernacular Press Act passed by British class 11 social science CBSE

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

Name the nuclear plant located in Uttar Pradesh class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What steps did the French revolutionaries take to create class 11 social science CBSE

How did silk routes link the world Explain with three class 11 social science CBSE
