Answer
Verified
435.9k+ views
Hint: Create the circle of range $\left( 0,2\pi \right)$ instead of $\left( 0,8\pi \right)$ as both are same in case of a circle and $2\pi $is the minimum range for a circle. Plot 16 points by choosing 16 different angles. Choose the angles in such a way that their sine and cosine values are known.
Complete step by step answer:
A circle that ranges from 0 to $8\pi $, is the same as the circle ranges from 0 to $2\pi $because each rotation from one quadrant to another around the coordinate axes is $\dfrac{\pi }{2}$. For a complete circle it will be a complete rotation around 4 quadrants. Hence range will be $\dfrac{\pi }{2}\times 4=2\pi $.
So, to create a circle that ranges from 0 to $8\pi $, we have to create a circle ranging from 0 to $2\pi $.
Now for 16 points we have to consider 16 different angles.
The sine and cosine values of the angles can be taken from the given table
For other angles we just have to change the sign as per the quadrant.
So, the points are
$\begin{align}
& \left( \cos {{0}^{\circ }},\sin {{0}^{\circ }} \right)=\left( 1,0 \right) \\
& \left( \cos {{30}^{\circ }},\sin {{30}^{\circ }} \right)=\left( \dfrac{\sqrt{3}}{2},\dfrac{1}{2} \right) \\
& \left( \cos {{45}^{\circ }},\sin {{45}^{\circ }} \right)=\left( \dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}} \right) \\
& \left( \cos {{60}^{\circ }},\sin {{60}^{\circ }} \right)=\left( \dfrac{1}{2},\dfrac{\sqrt{3}}{2} \right) \\
& \left( \cos {{90}^{\circ }},\sin {{90}^{\circ }} \right)=\left( 0,1 \right) \\
& \left( \cos {{120}^{\circ }},\sin {{120}^{\circ }} \right)=\left( -\dfrac{1}{2},\dfrac{\sqrt{3}}{2} \right) \\
& \left( \cos {{135}^{\circ }},\sin {{135}^{\circ }} \right)=\left( -\dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}} \right) \\
& \left( \cos {{150}^{\circ }},\sin {{150}^{\circ }} \right)=\left( -\dfrac{\sqrt{3}}{2},\dfrac{1}{2} \right) \\
& \left( \cos {{180}^{\circ }},\sin {{180}^{\circ }} \right)=\left( -1,0 \right) \\
& \left( \cos {{210}^{\circ }},\sin {{210}^{\circ }} \right)=\left( -\dfrac{\sqrt{3}}{2},-\dfrac{1}{2} \right) \\
& \left( \cos {{225}^{\circ }},\sin {{225}^{\circ }} \right)=\left( -\dfrac{1}{\sqrt{2}},-\dfrac{1}{\sqrt{2}} \right) \\
& \left( \cos {{240}^{\circ }},\sin {{240}^{\circ }} \right)=\left( -\dfrac{1}{2},-\dfrac{\sqrt{3}}{2} \right) \\
& \left( \cos {{270}^{\circ }},\sin {{270}^{\circ }} \right)=\left( 0,-1 \right) \\
& \left( \cos {{300}^{\circ }},\sin {{300}^{\circ }} \right)=\left( \dfrac{1}{2},-\dfrac{\sqrt{3}}{2} \right) \\
& \left( \cos {{315}^{\circ }},\sin {{315}^{\circ }} \right)=\left( \dfrac{1}{\sqrt{2}},-\dfrac{1}{\sqrt{2}} \right) \\
& \left( \cos {{330}^{\circ }},\sin {{330}^{\circ }} \right)=\left( \dfrac{\sqrt{3}}{2},-\dfrac{1}{2} \right) \\
& \left( \cos {{360}^{\circ }},\sin {{360}^{\circ }} \right)=\left( 1,0 \right) \\
\end{align}$
Note:
The angels should be chosen in such a way that their sine and cosine values are known or can be obtained easily. The 16 equal angle difference i.e. $\dfrac{{{360}^{\circ }}}{16}={{22.5}^{\circ }}$should be avoided because there will be complexity in calculation. For sine and cosine values of angles more than ${{90}^{\circ }}$, ASTC rule can be used.
Complete step by step answer:
A circle that ranges from 0 to $8\pi $, is the same as the circle ranges from 0 to $2\pi $because each rotation from one quadrant to another around the coordinate axes is $\dfrac{\pi }{2}$. For a complete circle it will be a complete rotation around 4 quadrants. Hence range will be $\dfrac{\pi }{2}\times 4=2\pi $.
So, to create a circle that ranges from 0 to $8\pi $, we have to create a circle ranging from 0 to $2\pi $.
Now for 16 points we have to consider 16 different angles.
The sine and cosine values of the angles can be taken from the given table
angle | Cosine value | Sine value |
${{0}^{\circ }}$ | 0 | 1 |
${{30}^{\circ }}$ | $\dfrac{\sqrt{3}}{2}$ | $\dfrac{1}{2}$ |
${{45}^{\circ }}$ | $\dfrac{1}{\sqrt{2}}$ | $\dfrac{1}{\sqrt{2}}$ |
${{60}^{\circ }}$ | $\dfrac{1}{2}$ | $\dfrac{\sqrt{3}}{2}$ |
${{90}^{\circ }}$ | 1 | 0 |
For other angles we just have to change the sign as per the quadrant.
So, the points are
$\begin{align}
& \left( \cos {{0}^{\circ }},\sin {{0}^{\circ }} \right)=\left( 1,0 \right) \\
& \left( \cos {{30}^{\circ }},\sin {{30}^{\circ }} \right)=\left( \dfrac{\sqrt{3}}{2},\dfrac{1}{2} \right) \\
& \left( \cos {{45}^{\circ }},\sin {{45}^{\circ }} \right)=\left( \dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}} \right) \\
& \left( \cos {{60}^{\circ }},\sin {{60}^{\circ }} \right)=\left( \dfrac{1}{2},\dfrac{\sqrt{3}}{2} \right) \\
& \left( \cos {{90}^{\circ }},\sin {{90}^{\circ }} \right)=\left( 0,1 \right) \\
& \left( \cos {{120}^{\circ }},\sin {{120}^{\circ }} \right)=\left( -\dfrac{1}{2},\dfrac{\sqrt{3}}{2} \right) \\
& \left( \cos {{135}^{\circ }},\sin {{135}^{\circ }} \right)=\left( -\dfrac{1}{\sqrt{2}},\dfrac{1}{\sqrt{2}} \right) \\
& \left( \cos {{150}^{\circ }},\sin {{150}^{\circ }} \right)=\left( -\dfrac{\sqrt{3}}{2},\dfrac{1}{2} \right) \\
& \left( \cos {{180}^{\circ }},\sin {{180}^{\circ }} \right)=\left( -1,0 \right) \\
& \left( \cos {{210}^{\circ }},\sin {{210}^{\circ }} \right)=\left( -\dfrac{\sqrt{3}}{2},-\dfrac{1}{2} \right) \\
& \left( \cos {{225}^{\circ }},\sin {{225}^{\circ }} \right)=\left( -\dfrac{1}{\sqrt{2}},-\dfrac{1}{\sqrt{2}} \right) \\
& \left( \cos {{240}^{\circ }},\sin {{240}^{\circ }} \right)=\left( -\dfrac{1}{2},-\dfrac{\sqrt{3}}{2} \right) \\
& \left( \cos {{270}^{\circ }},\sin {{270}^{\circ }} \right)=\left( 0,-1 \right) \\
& \left( \cos {{300}^{\circ }},\sin {{300}^{\circ }} \right)=\left( \dfrac{1}{2},-\dfrac{\sqrt{3}}{2} \right) \\
& \left( \cos {{315}^{\circ }},\sin {{315}^{\circ }} \right)=\left( \dfrac{1}{\sqrt{2}},-\dfrac{1}{\sqrt{2}} \right) \\
& \left( \cos {{330}^{\circ }},\sin {{330}^{\circ }} \right)=\left( \dfrac{\sqrt{3}}{2},-\dfrac{1}{2} \right) \\
& \left( \cos {{360}^{\circ }},\sin {{360}^{\circ }} \right)=\left( 1,0 \right) \\
\end{align}$
Note:
The angels should be chosen in such a way that their sine and cosine values are known or can be obtained easily. The 16 equal angle difference i.e. $\dfrac{{{360}^{\circ }}}{16}={{22.5}^{\circ }}$should be avoided because there will be complexity in calculation. For sine and cosine values of angles more than ${{90}^{\circ }}$, ASTC rule can be used.
Recently Updated Pages
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Write the IUPAC name of the given compound class 11 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE