Answer
Verified
449.7k+ views
Hint: Charges at rest produce only electric fields while charges in motion produce both electric and magnetic fields. Current is flowing through wire means that charge is in motion which produces the magnetic field and we will calculate the magnetic field produced by it at the required point
Formula used:
$B = \dfrac{{{\mu _0}i{r^2}}}{{2{{\left( {{r^2} + {x^2}} \right)}^{\dfrac{3}{2}}}}}$
Complete answer:
Electricity and magnetism are interdependent on each other. Motion of the magnet in the conducting loop generates the eddy currents while motion of charge in the conductor produces the magnetic field around it.
Here current is flowing in the coils in the same direction. So a magnetic field will be produced at point P due to both the coils. From the diagram below we can clearly understand that
We have a formula to find out the magnetic field on any point on the axis of the loop.
That formula is $B = \dfrac{{{\mu _0}i{r^2}}}{{2{{\left( {{r^2} + {x^2}} \right)}^{\dfrac{3}{2}}}}}$ where ${\mu _0}$ is the permeability in free space and equal to $4\pi \times {10^{ - 7}}$ and ’i’ is the current and equal to I amperes and ‘r’ is the radius which was already given as ‘a’ and ‘x’ is the axial distance from the center of the circular loop which is given as 0.5a. By substituting all these values in the formula we get
$\eqalign{
& B = \dfrac{{{\mu _0}i{r^2}}}{{2{{\left( {{r^2} + {x^2}} \right)}^{\dfrac{3}{2}}}}} \cr
& \Rightarrow B = \dfrac{{{\mu _0}I{a^2}}}{{2{{\left( {{a^2} + {{\left( {\dfrac{a}{2}} \right)}^2}} \right)}^{\dfrac{3}{2}}}}} \cr
& \therefore B = \dfrac{{4{\mu _0}I}}{{5\sqrt 5 a}} \cr} $
If we curl our right hand along the circular path of flow of current in circular lire then along the thumb we will get the direction of the magnetic field at a point on the axis of the loop.
So the magnetic fields at the point P due to two loops will be in same direction that is along the positive x axis i.e right side
So magnetic fields due to two loops will add and the resultant magnetic field will become
$\eqalign{
& B = \dfrac{{4{\mu _0}I}}{{5\sqrt 5 a}} \cr
& \Rightarrow {B_{result}} = 2 \times \left( {\dfrac{{4{\mu _0}I}}{{5\sqrt 5 a}}} \right) \cr
& \therefore {B_{result}} = \dfrac{{8{\mu _0}I}}{{5\sqrt 5 a}} \cr} $
Hence the resultant magnetic field at P will be $\dfrac{{8{\mu _0}I}}{{5\sqrt 5 a}}$
Note:
From the given question, if we change the direction of any of one current then the resultant magnetic field will be zero. They will cancel out. Magnitude will be the same in both the cases, but the direction will be varying. We can find the direction of the magnetic field anywhere on the axis by using the formula we have.
Formula used:
$B = \dfrac{{{\mu _0}i{r^2}}}{{2{{\left( {{r^2} + {x^2}} \right)}^{\dfrac{3}{2}}}}}$
Complete answer:
Electricity and magnetism are interdependent on each other. Motion of the magnet in the conducting loop generates the eddy currents while motion of charge in the conductor produces the magnetic field around it.
Here current is flowing in the coils in the same direction. So a magnetic field will be produced at point P due to both the coils. From the diagram below we can clearly understand that
We have a formula to find out the magnetic field on any point on the axis of the loop.
That formula is $B = \dfrac{{{\mu _0}i{r^2}}}{{2{{\left( {{r^2} + {x^2}} \right)}^{\dfrac{3}{2}}}}}$ where ${\mu _0}$ is the permeability in free space and equal to $4\pi \times {10^{ - 7}}$ and ’i’ is the current and equal to I amperes and ‘r’ is the radius which was already given as ‘a’ and ‘x’ is the axial distance from the center of the circular loop which is given as 0.5a. By substituting all these values in the formula we get
$\eqalign{
& B = \dfrac{{{\mu _0}i{r^2}}}{{2{{\left( {{r^2} + {x^2}} \right)}^{\dfrac{3}{2}}}}} \cr
& \Rightarrow B = \dfrac{{{\mu _0}I{a^2}}}{{2{{\left( {{a^2} + {{\left( {\dfrac{a}{2}} \right)}^2}} \right)}^{\dfrac{3}{2}}}}} \cr
& \therefore B = \dfrac{{4{\mu _0}I}}{{5\sqrt 5 a}} \cr} $
If we curl our right hand along the circular path of flow of current in circular lire then along the thumb we will get the direction of the magnetic field at a point on the axis of the loop.
So the magnetic fields at the point P due to two loops will be in same direction that is along the positive x axis i.e right side
So magnetic fields due to two loops will add and the resultant magnetic field will become
$\eqalign{
& B = \dfrac{{4{\mu _0}I}}{{5\sqrt 5 a}} \cr
& \Rightarrow {B_{result}} = 2 \times \left( {\dfrac{{4{\mu _0}I}}{{5\sqrt 5 a}}} \right) \cr
& \therefore {B_{result}} = \dfrac{{8{\mu _0}I}}{{5\sqrt 5 a}} \cr} $
Hence the resultant magnetic field at P will be $\dfrac{{8{\mu _0}I}}{{5\sqrt 5 a}}$
Note:
From the given question, if we change the direction of any of one current then the resultant magnetic field will be zero. They will cancel out. Magnitude will be the same in both the cases, but the direction will be varying. We can find the direction of the magnetic field anywhere on the axis by using the formula we have.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers