D and E are the points on the sides AB and AC respectively of a triangle ABC such that AD=8 cm, DB=12 cm, AE=6 cm and CE=9 cm. Prove that ${\text{BC}} = \dfrac{{5\left( {{\text{DE}}} \right)}}{2}$ .
Answer
Verified
506.7k+ views
Hint: Here, we will be proceeding by making the two triangles i.e., $\vartriangle {\text{ADE}}$ and $\vartriangle {\text{ABC}}$ as congruent triangles with the help of Inverse of Basic Proportionality Theorem and concept of corresponding angles.
Complete step-by-step answer:
Given, AD=8 cm, DB=12 cm, AE=6 cm and CE=9 cm
To prove: ${\text{BC}} = \dfrac{{5\left( {{\text{DE}}} \right)}}{2}$
If we observe the ratio of AD to DB, it is equal to
$ \dfrac{AD}{DB} = \dfrac{8}{{12}} $
$ \Rightarrow \dfrac{AD}{{DB}} = \dfrac{2}{3} $
Now observe the ratio of AE to CE, it is equal to
$ \dfrac{{{\text{AE}}}}{{{\text{CE}}}} = \dfrac{6}{9} $
$ \Rightarrow \dfrac{{{\text{AE}}}}{{{\text{CE}}}} = \dfrac{2}{3}{\text{ }} \to {\text{(2)}} $
As we know that the Inverse of Basic Proportionality Theorem states that if a line divides two sides of a triangle at distinct points in the same ratio then that line is parallel to the third side of the triangle.
By equations (1) and (2), we can say the ratio in which line DE is dividing the two sides AB and AC of the triangle ABC is equal. So, according to the Inverse of Basic Proportionality Theorem this line DE should be parallel to the third side (i.e., BC) of the triangle ABC.
So, DE is parallel to BC i.e., ${\text{DE}}\parallel {\text{BC}}$
Also we know that if ${\text{DE}}\parallel {\text{BC}}$ then the corresponding angles will be equal.
i.e., $\angle {\text{ADE}} = \angle {\text{ABC}}$ and $\angle {\text{AED}} = \angle {\text{ACB}}$
In triangles $\vartriangle {\text{ADE}}$ and$\vartriangle {\text{ABC}}$,
$\angle {\text{ADE}} = \angle {\text{ABC}}$
$\angle {\text{AED}} = \angle {\text{ACB}}$
$\angle {\text{A}} = \angle {\text{A}}$ common to both the triangles $\vartriangle {\text{ADE}}$ and $\vartriangle {\text{ABC}}$
Therefore, by AAA (Angle-Angle-Angle) congruence rule, we can say that both of these triangles are congruent to each other.
i.e., $\vartriangle {\text{ADE}} \cong \vartriangle {\text{ABC}}$
Also we know that, if the two triangles are congruent to each other then, the ratio of their corresponding sides will also be equal.
i.e.,
$ \dfrac{{{\text{AD}}}}{{{\text{AB}}}} = \dfrac{{{\text{DE}}}}{{{\text{BC}}}}$
$ \Rightarrow \dfrac{{{\text{AD}}}}{{{\text{AD + DB}}}} = \dfrac{{{\text{DE}}}}{{{\text{BC}}}} $
$ \Rightarrow \dfrac{{\text{8}}}{{{\text{8 + 12}}}} = \dfrac{{{\text{DE}}}}{{{\text{BC}}}} $
$ \Rightarrow \dfrac{{{\text{DE}}}}{{{\text{BC}}}} = \dfrac{{\text{8}}}{{{\text{20}}}} = \dfrac{{\text{2}}}{{\text{5}}} $
$ \Rightarrow {\text{BC}} = \dfrac{{{\text{5}}\left( {{\text{DE}}} \right)}}{{\text{2}}} $
The above equation represents the required relation between BC and DE.
Note: In this particular problem, we have considered the ratios $\dfrac{{{\text{AD}}}}{{{\text{AB}}}}$ and $\dfrac{{{\text{DE}}}}{{{\text{BC}}}}$ to be equal in order to obtain the required relationship between BC and DE but we will be getting same results if we would have considered the ratios $\dfrac{{{\text{AE}}}}{{{\text{AC}}}}$ and $\dfrac{{{\text{DE}}}}{{{\text{BC}}}}$ to be equal because $\dfrac{{{\text{AE}}}}{{{\text{AC}}}} = \dfrac{{{\text{AE}}}}{{{\text{AE}} + {\text{CE}}}} = \dfrac{{\text{6}}}{{{\text{6}} + {\text{9}}}} = \dfrac{6}{{15}} = \dfrac{2}{5} = \dfrac{{{\text{AD}}}}{{{\text{AB}}}}$.
Complete step-by-step answer:
Given, AD=8 cm, DB=12 cm, AE=6 cm and CE=9 cm
To prove: ${\text{BC}} = \dfrac{{5\left( {{\text{DE}}} \right)}}{2}$
If we observe the ratio of AD to DB, it is equal to
$ \dfrac{AD}{DB} = \dfrac{8}{{12}} $
$ \Rightarrow \dfrac{AD}{{DB}} = \dfrac{2}{3} $
Now observe the ratio of AE to CE, it is equal to
$ \dfrac{{{\text{AE}}}}{{{\text{CE}}}} = \dfrac{6}{9} $
$ \Rightarrow \dfrac{{{\text{AE}}}}{{{\text{CE}}}} = \dfrac{2}{3}{\text{ }} \to {\text{(2)}} $
As we know that the Inverse of Basic Proportionality Theorem states that if a line divides two sides of a triangle at distinct points in the same ratio then that line is parallel to the third side of the triangle.
By equations (1) and (2), we can say the ratio in which line DE is dividing the two sides AB and AC of the triangle ABC is equal. So, according to the Inverse of Basic Proportionality Theorem this line DE should be parallel to the third side (i.e., BC) of the triangle ABC.
So, DE is parallel to BC i.e., ${\text{DE}}\parallel {\text{BC}}$
Also we know that if ${\text{DE}}\parallel {\text{BC}}$ then the corresponding angles will be equal.
i.e., $\angle {\text{ADE}} = \angle {\text{ABC}}$ and $\angle {\text{AED}} = \angle {\text{ACB}}$
In triangles $\vartriangle {\text{ADE}}$ and$\vartriangle {\text{ABC}}$,
$\angle {\text{ADE}} = \angle {\text{ABC}}$
$\angle {\text{AED}} = \angle {\text{ACB}}$
$\angle {\text{A}} = \angle {\text{A}}$ common to both the triangles $\vartriangle {\text{ADE}}$ and $\vartriangle {\text{ABC}}$
Therefore, by AAA (Angle-Angle-Angle) congruence rule, we can say that both of these triangles are congruent to each other.
i.e., $\vartriangle {\text{ADE}} \cong \vartriangle {\text{ABC}}$
Also we know that, if the two triangles are congruent to each other then, the ratio of their corresponding sides will also be equal.
i.e.,
$ \dfrac{{{\text{AD}}}}{{{\text{AB}}}} = \dfrac{{{\text{DE}}}}{{{\text{BC}}}}$
$ \Rightarrow \dfrac{{{\text{AD}}}}{{{\text{AD + DB}}}} = \dfrac{{{\text{DE}}}}{{{\text{BC}}}} $
$ \Rightarrow \dfrac{{\text{8}}}{{{\text{8 + 12}}}} = \dfrac{{{\text{DE}}}}{{{\text{BC}}}} $
$ \Rightarrow \dfrac{{{\text{DE}}}}{{{\text{BC}}}} = \dfrac{{\text{8}}}{{{\text{20}}}} = \dfrac{{\text{2}}}{{\text{5}}} $
$ \Rightarrow {\text{BC}} = \dfrac{{{\text{5}}\left( {{\text{DE}}} \right)}}{{\text{2}}} $
The above equation represents the required relation between BC and DE.
Note: In this particular problem, we have considered the ratios $\dfrac{{{\text{AD}}}}{{{\text{AB}}}}$ and $\dfrac{{{\text{DE}}}}{{{\text{BC}}}}$ to be equal in order to obtain the required relationship between BC and DE but we will be getting same results if we would have considered the ratios $\dfrac{{{\text{AE}}}}{{{\text{AC}}}}$ and $\dfrac{{{\text{DE}}}}{{{\text{BC}}}}$ to be equal because $\dfrac{{{\text{AE}}}}{{{\text{AC}}}} = \dfrac{{{\text{AE}}}}{{{\text{AE}} + {\text{CE}}}} = \dfrac{{\text{6}}}{{{\text{6}} + {\text{9}}}} = \dfrac{6}{{15}} = \dfrac{2}{5} = \dfrac{{{\text{AD}}}}{{{\text{AB}}}}$.
Recently Updated Pages
A uniform rod of length l and mass m is free to rotate class 10 physics CBSE
Solve the following pairs of linear equations by elimination class 10 maths CBSE
What could be the possible ones digits of the square class 10 maths CBSE
Where was the Great Bath found A Harappa B Mohenjodaro class 10 social science CBSE
PQ is a tangent to a circle with centre O at the point class 10 maths CBSE
The measures of two adjacent sides of a parallelogram class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE