Answer
Verified
430.5k+ views
Hint: We are given with the dimensions of a cuboidal room. In order to paint the walls and ceiling of the room only the base of the room is to be left. So we will paint 4 walls and the ceiling. Now we will find the areas of the walls and ceiling. Then on adding them we will get the total area that is to be painted. And after finding the area we will divide the area by the area that is getting painted in one can in order to find the number of cans required to paint the room.
Complete Step by Step Solution:
Given is a cuboid room that Daniel is painting. So in order to paint we should have the idea of what area of room we have to paint. So there are 4 walls and 1 ceiling. We have drawn the diagram of this room.
Now
\[are{a_{front{\text{ }}wall{\text{ }} + back{\text{ }}wall}} = 2\left( {l \times h} \right) = 2\left( {15 \times 7} \right) = 210{m^2}\]
\[are{a_{Two{\text{ }}side{\text{ }}walls}} = 2\left( {h \times b} \right) = 2\left( {7 \times 10} \right) = 140{m^2}\]
\[are{a_{ceiling}} = l \times b = 15 \times 10 = 150{m^2}\]
Total area to be painted is given by,
\[{\text{Total area to be painted = }}are{a_{front{\text{ }}wall{\text{ }} + back{\text{ }}wall}} + are{a_{Two{\text{ }}side{\text{ }}walls}} + are{a_{ceiling}}\]
Putting the areas we get,
\[{\text{Total area to be painted = 210 + 140 + 150 = 500}}{{\text{m}}^2}\]
Now number of cans required to paint the room = \[\dfrac{{Total{\text{ }}area{\text{ }}to{\text{ }}be{\text{ }}pa\operatorname{int} ed}}{{Area{\text{ }}painted{\text{ }}in{\text{ }}one{\text{ }}can}}\]
\[ \Rightarrow \dfrac{{500}}{{100}} = 5\]
So, Daniel will require 5 cans to paint her room.
Note:
Note that we are finding the number of cans required so don’t multiply the area with the area painted in one can. That is not the way to solve the question. Also we have considered the ceiling but don’t consider the base of the room. Also if in problem any window or door is given we will remove the area of that part also.
Complete Step by Step Solution:
Given is a cuboid room that Daniel is painting. So in order to paint we should have the idea of what area of room we have to paint. So there are 4 walls and 1 ceiling. We have drawn the diagram of this room.
Now
\[are{a_{front{\text{ }}wall{\text{ }} + back{\text{ }}wall}} = 2\left( {l \times h} \right) = 2\left( {15 \times 7} \right) = 210{m^2}\]
\[are{a_{Two{\text{ }}side{\text{ }}walls}} = 2\left( {h \times b} \right) = 2\left( {7 \times 10} \right) = 140{m^2}\]
\[are{a_{ceiling}} = l \times b = 15 \times 10 = 150{m^2}\]
Total area to be painted is given by,
\[{\text{Total area to be painted = }}are{a_{front{\text{ }}wall{\text{ }} + back{\text{ }}wall}} + are{a_{Two{\text{ }}side{\text{ }}walls}} + are{a_{ceiling}}\]
Putting the areas we get,
\[{\text{Total area to be painted = 210 + 140 + 150 = 500}}{{\text{m}}^2}\]
Now number of cans required to paint the room = \[\dfrac{{Total{\text{ }}area{\text{ }}to{\text{ }}be{\text{ }}pa\operatorname{int} ed}}{{Area{\text{ }}painted{\text{ }}in{\text{ }}one{\text{ }}can}}\]
\[ \Rightarrow \dfrac{{500}}{{100}} = 5\]
So, Daniel will require 5 cans to paint her room.
Note:
Note that we are finding the number of cans required so don’t multiply the area with the area painted in one can. That is not the way to solve the question. Also we have considered the ceiling but don’t consider the base of the room. Also if in problem any window or door is given we will remove the area of that part also.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE