Define constant function. Also write its graph. Domain and range of function.
Answer
Verified
485.1k+ views
Hint: A function is a rule which relates the values of one variable quantity to the values of another variable quantity.
Complete step by step solution: A constant function is a function whose (output) value is the same for every input value.
For example, the function \[y\left( x \right) = {\text{3}}\] is a constant function because the value of \[y\left( x \right)\] is \[{\text{3}}\] regardless of the input value $ x $.
Domain of function: The domain of a function is the complete set of possible values of the independent variable.
If\[f\left( x \right) = c\], they consist of all real numbers, there are no restrictions on the input. The only output value is the constant\[{\text{c}}\], so the range of the set \[\left\{ c \right\}\] that contains this single element
Range function: The range of a function is the complete set of all possible resulting values of the dependent variable of
For example:
Here: It is a set in the form of (\[{\text{x,y}}\]): $ \left\{ {( - 3,5),( - 2,5)( - 1,5)(2,5)(1,5)(2,5)} \right\} $
The values of\[\;{\text{y -}}\]values for the range.
Then range $ = \left\{ 5 \right\} $
Note: \[y\left( x \right) = {\text{3}}\] is the constant function where the range is $ 3 $ and the domain is $ x $.
Complete step by step solution: A constant function is a function whose (output) value is the same for every input value.
For example, the function \[y\left( x \right) = {\text{3}}\] is a constant function because the value of \[y\left( x \right)\] is \[{\text{3}}\] regardless of the input value $ x $.
Domain of function: The domain of a function is the complete set of possible values of the independent variable.
If\[f\left( x \right) = c\], they consist of all real numbers, there are no restrictions on the input. The only output value is the constant\[{\text{c}}\], so the range of the set \[\left\{ c \right\}\] that contains this single element
Range function: The range of a function is the complete set of all possible resulting values of the dependent variable of
For example:
Here: It is a set in the form of (\[{\text{x,y}}\]): $ \left\{ {( - 3,5),( - 2,5)( - 1,5)(2,5)(1,5)(2,5)} \right\} $
The values of\[\;{\text{y -}}\]values for the range.
Then range $ = \left\{ 5 \right\} $
Note: \[y\left( x \right) = {\text{3}}\] is the constant function where the range is $ 3 $ and the domain is $ x $.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE