Answer
Verified
473.4k+ views
Hint: Here, first we have to define about the function, domain and range and then we should explain about the modulus function which is $f(x)=\left| x \right|=\left\{ \begin{align}
& x,x\ge 0 \\
& -x,x<0 \\
\end{align} \right.$ $\forall x\in \mathbb{R}$. Now for different values of $x$ find $y=f(x)$ to plot the graph and from the graph will get the idea about the domain and range of the function $f(x)$.
Complete step-by-step answer:
To define a modulus function first we should know about a function. A relation $f$ from a set A to a set B is said to be a function if every element of A has one and only one image in set B.
That is, for the notation $f:X\to Y$ means that $f$ is a function from $X$ to $Y$. $X$ is called the domain of $f$ and $Y$ is called the codomain of $f$. The set of all values of $f(x)$ taken together is called the range of $f$.
Range of $f$= $\left\{ y\in Y|y=f(x),\text{ for some }x\text{ in }X \right\}$
There are some specific types of functions. One of such function is the modulus function.
Now, we can define the modulus function. The modulus function is the real function $f:\mathbb{R}\to \mathbb{R}$ defined by:
$f(x)=\left| x \right|=\left\{ \begin{align}
& x,x\ge 0 \\
& -x,x<0 \\
\end{align} \right.$ $\forall x\in \mathbb{R}$.
Now, let us check $f(x)$ for different values of $x$.
Consider, $x=-1$ we have, $x<0,f(x)=-x$, then
$\begin{align}
& y=f(-1) \\
& y=-(-1) \\
& y==1 \\
\end{align}$
Consider, $x=-2$ we have, $x<0,f(x)=-x$, then
$\begin{align}
& y=f(-2) \\
& y=-(-2) \\
& y=2 \\
\end{align}$
Now, for $x=0$, we have, $x\ge 0$, so $f(x)=x$. Hence, we will get:
$\begin{align}
& y=f(0) \\
& y=0 \\
\end{align}$.
Consider, $x=1$, we have, $x>0$, so $f(x)=x$. Hence, we will get:
$\begin{align}
& y=f(1) \\
& y=1 \\
\end{align}$.
Consider, $x=2$, we have, $x>0$, so $f(x)=x$. Hence, we will get:
$\begin{align}
& y=f(2) \\
& y=2 \\
\end{align}$.
Now, let us plot the graph of modulus function.
Consider, some points to plot the graph.
First, for $x<0$, we have $f(x)=-x$. Now, consider two points:$$
Now, consider for $x\ge 0$, we have $f(x)=x$. So, consider the points:
With these points we will get the graph as follows:
Now, from the graph, let us write the domain and range of the function $f(x)=|x|$.
Here, domain of $f$ = all values of real numbers, $\mathbb{R}$
Range of $f$ = all positive real numbers and zero.
Note: Here you have to split the function for $x<0$ and $x\ge 0$, to get a clear understanding. It is also helpful to plot the graph if you split the function, since the function is defined differently for both the cases.
& x,x\ge 0 \\
& -x,x<0 \\
\end{align} \right.$ $\forall x\in \mathbb{R}$. Now for different values of $x$ find $y=f(x)$ to plot the graph and from the graph will get the idea about the domain and range of the function $f(x)$.
Complete step-by-step answer:
To define a modulus function first we should know about a function. A relation $f$ from a set A to a set B is said to be a function if every element of A has one and only one image in set B.
That is, for the notation $f:X\to Y$ means that $f$ is a function from $X$ to $Y$. $X$ is called the domain of $f$ and $Y$ is called the codomain of $f$. The set of all values of $f(x)$ taken together is called the range of $f$.
Range of $f$= $\left\{ y\in Y|y=f(x),\text{ for some }x\text{ in }X \right\}$
There are some specific types of functions. One of such function is the modulus function.
Now, we can define the modulus function. The modulus function is the real function $f:\mathbb{R}\to \mathbb{R}$ defined by:
$f(x)=\left| x \right|=\left\{ \begin{align}
& x,x\ge 0 \\
& -x,x<0 \\
\end{align} \right.$ $\forall x\in \mathbb{R}$.
Now, let us check $f(x)$ for different values of $x$.
Consider, $x=-1$ we have, $x<0,f(x)=-x$, then
$\begin{align}
& y=f(-1) \\
& y=-(-1) \\
& y==1 \\
\end{align}$
Consider, $x=-2$ we have, $x<0,f(x)=-x$, then
$\begin{align}
& y=f(-2) \\
& y=-(-2) \\
& y=2 \\
\end{align}$
Now, for $x=0$, we have, $x\ge 0$, so $f(x)=x$. Hence, we will get:
$\begin{align}
& y=f(0) \\
& y=0 \\
\end{align}$.
Consider, $x=1$, we have, $x>0$, so $f(x)=x$. Hence, we will get:
$\begin{align}
& y=f(1) \\
& y=1 \\
\end{align}$.
Consider, $x=2$, we have, $x>0$, so $f(x)=x$. Hence, we will get:
$\begin{align}
& y=f(2) \\
& y=2 \\
\end{align}$.
Now, let us plot the graph of modulus function.
Consider, some points to plot the graph.
First, for $x<0$, we have $f(x)=-x$. Now, consider two points:$$
Now, consider for $x\ge 0$, we have $f(x)=x$. So, consider the points:
With these points we will get the graph as follows:
Now, from the graph, let us write the domain and range of the function $f(x)=|x|$.
Here, domain of $f$ = all values of real numbers, $\mathbb{R}$
Range of $f$ = all positive real numbers and zero.
Note: Here you have to split the function for $x<0$ and $x\ge 0$, to get a clear understanding. It is also helpful to plot the graph if you split the function, since the function is defined differently for both the cases.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE