
Define normality.
\[6.3gms\] of oxalic acid is present in \[500ml\] of solution its normality is:
Answer
493.5k+ views
Hint: We must know about the word normality. Generally, normality is a quantitative measurement for chemical solutions. We can use the below formula to determine the normality of the solution.
\[Normality{\text{ }}of{\text{ }}solution{\text{ }}N = \dfrac{{Weight}}{{equivalent{\text{ }}wt.}} \times \dfrac{{1000}}{{volume(ml)}}\]
Complete step by step answer:
The concentration of any solution that is acknowledged in terms of gram equivalents is the normality of the solution.
We can use normality as the number of mole equivalents per liter of solution. Usually, the normality of the solution is represented by N or equivalent per liter (\[eq/L\])units.
We know that the chemical formula of oxalic acid is \[{C_2}{H_2}{O_4}.2{H_2}O\]
Ans also the molecular mass of\[{C_2}{H_2}{O_4}.2{H_2}O\] =\[126g\]
Now, to calculate normality, we will use below formula
\[Normality{\text{ }}of{\text{ }}oxalic{\text{ }}acid,N = \dfrac{{Wt.{\text{ }}of{\text{ }}oxalic{\text{ }}acid}}{{equivalent{\text{ }}wt.}} \times \dfrac{{1000}}{{volume(ml)}}\]
To solve this, we must have a value of the equivalent weight of oxalic acid.
So, equivalent weight of Oxalic acid = \[\dfrac{{molecular{\text{ }}mass}}{{Basicity}}\]
∴ equivalent weight of Oxalic acid = \[\dfrac{{126}}{2}\] =\[63{\text{ }}gm/eq\].
Now, substituting the values, in the formula of normality equation, we get
Normality= \[\dfrac{{6.3}}{{63}} \times \dfrac{{1000}}{{500}} = 0.1 \times 2{\text{ }} = 0.2{\text{ }}gm.mole{\text{ }}per{\text{ }}liter\]
Hence, the Normality of oxalic acid is\[0.2{\text{ }}gram{\text{ }}moles{\text{ }}per{\text{ }}litre\].
Additional information:
We can use normality instead of molarity because often \[1{\text{ }}mole\]of acid does not neutralize \[1{\text{ }}mole\]of base.
Below given are different formulas that are used to calculate Normality of a solution depending upon given data.
i.\[Normality{\text{ }} = {\text{ }}Number{\text{ }}of{\text{ }}gram{\text{ }}equivalents{\text{ }} \times {\text{ }}{\left[ {volume{\text{ }}of{\text{ }}solution{\text{ }}in{\text{ }}litres} \right]^{ - 1}}\]
ii.\[Number{\text{ }}of{\text{ }}gram{\text{ }}equivalents{\text{ }} = {\text{ }}weight{\text{ }}of{\text{ }}solute\; \times {\text{ }}{\left[ {Equivalent{\text{ }}weight{\text{ }}of{\text{ }}solute} \right]^{ - 1}}\]
iii.\[N{\text{ }} = {\text{ }}Weight{\text{ }}of{\text{ }}Solute{\text{ }}\left( {gram} \right){\text{ }} \times {\text{ }}\left[ {Equivalent{\text{ }}weight{\text{ }} \times {\text{ }}Volume{\text{ }}\left( L \right)} \right]\]
iv.\[N{\text{ }} = {\text{ }}Molarity{\text{ }} \times {\text{ }}Molar{\text{ }}mass{\text{ }} \times {\text{ }}{\left[ {Equivalent{\text{ }}mass} \right]^{ - 1}}\]
v.\[N{\text{ }} = {\text{ }}Molarity\; \times {\text{ }}Basicity\; = {\text{ }}Molarity{\text{ }} \times {\text{ }}Acidity\]
Note:
We can use normality to determine the concentrations of the solution in acid-base titration chemistry. For example, we can use normality to determine the number of ions that will get precipitated in precipitation reactions. Also in redox reactions to determine the number of electrons that a reducing or an oxidizing agent can donate or accept.
\[Normality{\text{ }}of{\text{ }}solution{\text{ }}N = \dfrac{{Weight}}{{equivalent{\text{ }}wt.}} \times \dfrac{{1000}}{{volume(ml)}}\]
Complete step by step answer:
The concentration of any solution that is acknowledged in terms of gram equivalents is the normality of the solution.
We can use normality as the number of mole equivalents per liter of solution. Usually, the normality of the solution is represented by N or equivalent per liter (\[eq/L\])units.
We know that the chemical formula of oxalic acid is \[{C_2}{H_2}{O_4}.2{H_2}O\]
Ans also the molecular mass of\[{C_2}{H_2}{O_4}.2{H_2}O\] =\[126g\]
Now, to calculate normality, we will use below formula
\[Normality{\text{ }}of{\text{ }}oxalic{\text{ }}acid,N = \dfrac{{Wt.{\text{ }}of{\text{ }}oxalic{\text{ }}acid}}{{equivalent{\text{ }}wt.}} \times \dfrac{{1000}}{{volume(ml)}}\]
To solve this, we must have a value of the equivalent weight of oxalic acid.
So, equivalent weight of Oxalic acid = \[\dfrac{{molecular{\text{ }}mass}}{{Basicity}}\]
∴ equivalent weight of Oxalic acid = \[\dfrac{{126}}{2}\] =\[63{\text{ }}gm/eq\].
Now, substituting the values, in the formula of normality equation, we get
Normality= \[\dfrac{{6.3}}{{63}} \times \dfrac{{1000}}{{500}} = 0.1 \times 2{\text{ }} = 0.2{\text{ }}gm.mole{\text{ }}per{\text{ }}liter\]
Hence, the Normality of oxalic acid is\[0.2{\text{ }}gram{\text{ }}moles{\text{ }}per{\text{ }}litre\].
Additional information:
We can use normality instead of molarity because often \[1{\text{ }}mole\]of acid does not neutralize \[1{\text{ }}mole\]of base.
Below given are different formulas that are used to calculate Normality of a solution depending upon given data.
i.\[Normality{\text{ }} = {\text{ }}Number{\text{ }}of{\text{ }}gram{\text{ }}equivalents{\text{ }} \times {\text{ }}{\left[ {volume{\text{ }}of{\text{ }}solution{\text{ }}in{\text{ }}litres} \right]^{ - 1}}\]
ii.\[Number{\text{ }}of{\text{ }}gram{\text{ }}equivalents{\text{ }} = {\text{ }}weight{\text{ }}of{\text{ }}solute\; \times {\text{ }}{\left[ {Equivalent{\text{ }}weight{\text{ }}of{\text{ }}solute} \right]^{ - 1}}\]
iii.\[N{\text{ }} = {\text{ }}Weight{\text{ }}of{\text{ }}Solute{\text{ }}\left( {gram} \right){\text{ }} \times {\text{ }}\left[ {Equivalent{\text{ }}weight{\text{ }} \times {\text{ }}Volume{\text{ }}\left( L \right)} \right]\]
iv.\[N{\text{ }} = {\text{ }}Molarity{\text{ }} \times {\text{ }}Molar{\text{ }}mass{\text{ }} \times {\text{ }}{\left[ {Equivalent{\text{ }}mass} \right]^{ - 1}}\]
v.\[N{\text{ }} = {\text{ }}Molarity\; \times {\text{ }}Basicity\; = {\text{ }}Molarity{\text{ }} \times {\text{ }}Acidity\]
Note:
We can use normality to determine the concentrations of the solution in acid-base titration chemistry. For example, we can use normality to determine the number of ions that will get precipitated in precipitation reactions. Also in redox reactions to determine the number of electrons that a reducing or an oxidizing agent can donate or accept.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
