
Define normality.
\[6.3gms\] of oxalic acid is present in \[500ml\] of solution its normality is:
Answer
592.8k+ views
Hint: We must know about the word normality. Generally, normality is a quantitative measurement for chemical solutions. We can use the below formula to determine the normality of the solution.
\[Normality{\text{ }}of{\text{ }}solution{\text{ }}N = \dfrac{{Weight}}{{equivalent{\text{ }}wt.}} \times \dfrac{{1000}}{{volume(ml)}}\]
Complete step by step answer:
The concentration of any solution that is acknowledged in terms of gram equivalents is the normality of the solution.
We can use normality as the number of mole equivalents per liter of solution. Usually, the normality of the solution is represented by N or equivalent per liter (\[eq/L\])units.
We know that the chemical formula of oxalic acid is \[{C_2}{H_2}{O_4}.2{H_2}O\]
Ans also the molecular mass of\[{C_2}{H_2}{O_4}.2{H_2}O\] =\[126g\]
Now, to calculate normality, we will use below formula
\[Normality{\text{ }}of{\text{ }}oxalic{\text{ }}acid,N = \dfrac{{Wt.{\text{ }}of{\text{ }}oxalic{\text{ }}acid}}{{equivalent{\text{ }}wt.}} \times \dfrac{{1000}}{{volume(ml)}}\]
To solve this, we must have a value of the equivalent weight of oxalic acid.
So, equivalent weight of Oxalic acid = \[\dfrac{{molecular{\text{ }}mass}}{{Basicity}}\]
∴ equivalent weight of Oxalic acid = \[\dfrac{{126}}{2}\] =\[63{\text{ }}gm/eq\].
Now, substituting the values, in the formula of normality equation, we get
Normality= \[\dfrac{{6.3}}{{63}} \times \dfrac{{1000}}{{500}} = 0.1 \times 2{\text{ }} = 0.2{\text{ }}gm.mole{\text{ }}per{\text{ }}liter\]
Hence, the Normality of oxalic acid is\[0.2{\text{ }}gram{\text{ }}moles{\text{ }}per{\text{ }}litre\].
Additional information:
We can use normality instead of molarity because often \[1{\text{ }}mole\]of acid does not neutralize \[1{\text{ }}mole\]of base.
Below given are different formulas that are used to calculate Normality of a solution depending upon given data.
i.\[Normality{\text{ }} = {\text{ }}Number{\text{ }}of{\text{ }}gram{\text{ }}equivalents{\text{ }} \times {\text{ }}{\left[ {volume{\text{ }}of{\text{ }}solution{\text{ }}in{\text{ }}litres} \right]^{ - 1}}\]
ii.\[Number{\text{ }}of{\text{ }}gram{\text{ }}equivalents{\text{ }} = {\text{ }}weight{\text{ }}of{\text{ }}solute\; \times {\text{ }}{\left[ {Equivalent{\text{ }}weight{\text{ }}of{\text{ }}solute} \right]^{ - 1}}\]
iii.\[N{\text{ }} = {\text{ }}Weight{\text{ }}of{\text{ }}Solute{\text{ }}\left( {gram} \right){\text{ }} \times {\text{ }}\left[ {Equivalent{\text{ }}weight{\text{ }} \times {\text{ }}Volume{\text{ }}\left( L \right)} \right]\]
iv.\[N{\text{ }} = {\text{ }}Molarity{\text{ }} \times {\text{ }}Molar{\text{ }}mass{\text{ }} \times {\text{ }}{\left[ {Equivalent{\text{ }}mass} \right]^{ - 1}}\]
v.\[N{\text{ }} = {\text{ }}Molarity\; \times {\text{ }}Basicity\; = {\text{ }}Molarity{\text{ }} \times {\text{ }}Acidity\]
Note:
We can use normality to determine the concentrations of the solution in acid-base titration chemistry. For example, we can use normality to determine the number of ions that will get precipitated in precipitation reactions. Also in redox reactions to determine the number of electrons that a reducing or an oxidizing agent can donate or accept.
\[Normality{\text{ }}of{\text{ }}solution{\text{ }}N = \dfrac{{Weight}}{{equivalent{\text{ }}wt.}} \times \dfrac{{1000}}{{volume(ml)}}\]
Complete step by step answer:
The concentration of any solution that is acknowledged in terms of gram equivalents is the normality of the solution.
We can use normality as the number of mole equivalents per liter of solution. Usually, the normality of the solution is represented by N or equivalent per liter (\[eq/L\])units.
We know that the chemical formula of oxalic acid is \[{C_2}{H_2}{O_4}.2{H_2}O\]
Ans also the molecular mass of\[{C_2}{H_2}{O_4}.2{H_2}O\] =\[126g\]
Now, to calculate normality, we will use below formula
\[Normality{\text{ }}of{\text{ }}oxalic{\text{ }}acid,N = \dfrac{{Wt.{\text{ }}of{\text{ }}oxalic{\text{ }}acid}}{{equivalent{\text{ }}wt.}} \times \dfrac{{1000}}{{volume(ml)}}\]
To solve this, we must have a value of the equivalent weight of oxalic acid.
So, equivalent weight of Oxalic acid = \[\dfrac{{molecular{\text{ }}mass}}{{Basicity}}\]
∴ equivalent weight of Oxalic acid = \[\dfrac{{126}}{2}\] =\[63{\text{ }}gm/eq\].
Now, substituting the values, in the formula of normality equation, we get
Normality= \[\dfrac{{6.3}}{{63}} \times \dfrac{{1000}}{{500}} = 0.1 \times 2{\text{ }} = 0.2{\text{ }}gm.mole{\text{ }}per{\text{ }}liter\]
Hence, the Normality of oxalic acid is\[0.2{\text{ }}gram{\text{ }}moles{\text{ }}per{\text{ }}litre\].
Additional information:
We can use normality instead of molarity because often \[1{\text{ }}mole\]of acid does not neutralize \[1{\text{ }}mole\]of base.
Below given are different formulas that are used to calculate Normality of a solution depending upon given data.
i.\[Normality{\text{ }} = {\text{ }}Number{\text{ }}of{\text{ }}gram{\text{ }}equivalents{\text{ }} \times {\text{ }}{\left[ {volume{\text{ }}of{\text{ }}solution{\text{ }}in{\text{ }}litres} \right]^{ - 1}}\]
ii.\[Number{\text{ }}of{\text{ }}gram{\text{ }}equivalents{\text{ }} = {\text{ }}weight{\text{ }}of{\text{ }}solute\; \times {\text{ }}{\left[ {Equivalent{\text{ }}weight{\text{ }}of{\text{ }}solute} \right]^{ - 1}}\]
iii.\[N{\text{ }} = {\text{ }}Weight{\text{ }}of{\text{ }}Solute{\text{ }}\left( {gram} \right){\text{ }} \times {\text{ }}\left[ {Equivalent{\text{ }}weight{\text{ }} \times {\text{ }}Volume{\text{ }}\left( L \right)} \right]\]
iv.\[N{\text{ }} = {\text{ }}Molarity{\text{ }} \times {\text{ }}Molar{\text{ }}mass{\text{ }} \times {\text{ }}{\left[ {Equivalent{\text{ }}mass} \right]^{ - 1}}\]
v.\[N{\text{ }} = {\text{ }}Molarity\; \times {\text{ }}Basicity\; = {\text{ }}Molarity{\text{ }} \times {\text{ }}Acidity\]
Note:
We can use normality to determine the concentrations of the solution in acid-base titration chemistry. For example, we can use normality to determine the number of ions that will get precipitated in precipitation reactions. Also in redox reactions to determine the number of electrons that a reducing or an oxidizing agent can donate or accept.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

