Answer
Verified
466.5k+ views
Hint: Try to interpret the definitions of the terms mentioned in the question and represent them in the form of a diagram.
Complete step-by-step answer:
To start with the solution, we first try to describe the term vertically opposite angles. When two lines intersect at a point, then the pair of angles formed, which are opposite to each other, are called vertically opposite angles. They share the same vertex and are equal to mathematically. Vertically opposite angles can be represented by the diagram as:
Now let’s move to adjacent angles. When two angles have a common side and a common corner but don’t overlap and are not the opposite, they are called adjacent angles. The diagram of adjacent angles is:
Now a linear pair of angles is defined as the pair of angles two angles that have a common side and a common corner but don’t overlap are not opposed to each other and whose sum is equal to $180{}^\circ $. We can show it in a diagram as:
Note: It is very important to learn all the properties of vertically opposite angles and adjacent angles as they are often used. Also, a point of similarity of all the pair of angles talked about in the above question is that they share the same vertex and the same intersecting lines.
Complete step-by-step answer:
To start with the solution, we first try to describe the term vertically opposite angles. When two lines intersect at a point, then the pair of angles formed, which are opposite to each other, are called vertically opposite angles. They share the same vertex and are equal to mathematically. Vertically opposite angles can be represented by the diagram as:
Now let’s move to adjacent angles. When two angles have a common side and a common corner but don’t overlap and are not the opposite, they are called adjacent angles. The diagram of adjacent angles is:
Now a linear pair of angles is defined as the pair of angles two angles that have a common side and a common corner but don’t overlap are not opposed to each other and whose sum is equal to $180{}^\circ $. We can show it in a diagram as:
Note: It is very important to learn all the properties of vertically opposite angles and adjacent angles as they are often used. Also, a point of similarity of all the pair of angles talked about in the above question is that they share the same vertex and the same intersecting lines.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE