
What is the degeneracy of the level of hydrogen atom that has energy$(\dfrac{-{{R}_{H}}}{9})$?
(A) 16
(B) 9
(C) 4
(D) 1
Answer
142.8k+ views
Hint:Hydrogen atom is a uni-electronic system. It contains only one electron and one proton. The repulsive forces due to electrons are absent in hydrogen atoms. Degeneracy of level means that the orbitals are of equal energy in a particular sub-shell.
Complete step by step solution:
Let’s see the answer to the given question:
We know that the energy is inversely proportional to the square of the level of the shell in which the electron is present.
That is, $E\propto -\dfrac{1}{{{n}^{2}}}$
$\Rightarrow \,\,E=-\dfrac{{{R}_{H}}}{{{n}^{2}}}$…..equation 1
Now, it is given in the question that:
$E=-\dfrac{{{R}_{H}}}{9}$
$E=-\dfrac{{{R}_{H}}}{{{3}^{2}}}$…..equation 2
On comparing equation 1 and equation 2
We get, n=3
Therefore, the electron in in the third level or shell of the hydrogen atom
Now, we know that the azimuthal quantum number ‘l’ gives the number of subshells and the magnetic quantum number ‘m’ gives the number of orbitals present in a shell.
Now, for n=3
l = 0 and m = 0
l = 1 and m = +1, 0, -1
l = 2 and m = -2, -1, 0, +1, +2
So, the total number of degenerate orbitals = 1+3+5 = 9
Hence, the answer of the given question is option (B).
Note: Degeneracy of orbitals means that the orbitals are of equal energy. Such orbitals are called degenerate orbitals. In hydrogen the level of energy degeneracy is as follows:
1s, 2s = 2p, 3s = 3p = 3d, 4s = 4p = 4d = 4f,…
Complete step by step solution:
Let’s see the answer to the given question:
We know that the energy is inversely proportional to the square of the level of the shell in which the electron is present.
That is, $E\propto -\dfrac{1}{{{n}^{2}}}$
$\Rightarrow \,\,E=-\dfrac{{{R}_{H}}}{{{n}^{2}}}$…..equation 1
Now, it is given in the question that:
$E=-\dfrac{{{R}_{H}}}{9}$
$E=-\dfrac{{{R}_{H}}}{{{3}^{2}}}$…..equation 2
On comparing equation 1 and equation 2
We get, n=3
Therefore, the electron in in the third level or shell of the hydrogen atom
Now, we know that the azimuthal quantum number ‘l’ gives the number of subshells and the magnetic quantum number ‘m’ gives the number of orbitals present in a shell.
Now, for n=3
l = 0 and m = 0
l = 1 and m = +1, 0, -1
l = 2 and m = -2, -1, 0, +1, +2
So, the total number of degenerate orbitals = 1+3+5 = 9
Hence, the answer of the given question is option (B).
Note: Degeneracy of orbitals means that the orbitals are of equal energy. Such orbitals are called degenerate orbitals. In hydrogen the level of energy degeneracy is as follows:
1s, 2s = 2p, 3s = 3p = 3d, 4s = 4p = 4d = 4f,…
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Types of Solutions

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics

Hydrocarbons Class 11 Notes: CBSE Chemistry Chapter 9

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry
