Answer
Verified
110.4k+ views
Hint:Hydrogen atom is a uni-electronic system. It contains only one electron and one proton. The repulsive forces due to electrons are absent in hydrogen atoms. Degeneracy of level means that the orbitals are of equal energy in a particular sub-shell.
Complete step by step solution:
Let’s see the answer to the given question:
We know that the energy is inversely proportional to the square of the level of the shell in which the electron is present.
That is, $E\propto -\dfrac{1}{{{n}^{2}}}$
$\Rightarrow \,\,E=-\dfrac{{{R}_{H}}}{{{n}^{2}}}$…..equation 1
Now, it is given in the question that:
$E=-\dfrac{{{R}_{H}}}{9}$
$E=-\dfrac{{{R}_{H}}}{{{3}^{2}}}$…..equation 2
On comparing equation 1 and equation 2
We get, n=3
Therefore, the electron in in the third level or shell of the hydrogen atom
Now, we know that the azimuthal quantum number ‘l’ gives the number of subshells and the magnetic quantum number ‘m’ gives the number of orbitals present in a shell.
Now, for n=3
l = 0 and m = 0
l = 1 and m = +1, 0, -1
l = 2 and m = -2, -1, 0, +1, +2
So, the total number of degenerate orbitals = 1+3+5 = 9
Hence, the answer of the given question is option (B).
Note: Degeneracy of orbitals means that the orbitals are of equal energy. Such orbitals are called degenerate orbitals. In hydrogen the level of energy degeneracy is as follows:
1s, 2s = 2p, 3s = 3p = 3d, 4s = 4p = 4d = 4f,…
Complete step by step solution:
Let’s see the answer to the given question:
We know that the energy is inversely proportional to the square of the level of the shell in which the electron is present.
That is, $E\propto -\dfrac{1}{{{n}^{2}}}$
$\Rightarrow \,\,E=-\dfrac{{{R}_{H}}}{{{n}^{2}}}$…..equation 1
Now, it is given in the question that:
$E=-\dfrac{{{R}_{H}}}{9}$
$E=-\dfrac{{{R}_{H}}}{{{3}^{2}}}$…..equation 2
On comparing equation 1 and equation 2
We get, n=3
Therefore, the electron in in the third level or shell of the hydrogen atom
Now, we know that the azimuthal quantum number ‘l’ gives the number of subshells and the magnetic quantum number ‘m’ gives the number of orbitals present in a shell.
Now, for n=3
l = 0 and m = 0
l = 1 and m = +1, 0, -1
l = 2 and m = -2, -1, 0, +1, +2
So, the total number of degenerate orbitals = 1+3+5 = 9
Hence, the answer of the given question is option (B).
Note: Degeneracy of orbitals means that the orbitals are of equal energy. Such orbitals are called degenerate orbitals. In hydrogen the level of energy degeneracy is as follows:
1s, 2s = 2p, 3s = 3p = 3d, 4s = 4p = 4d = 4f,…
Recently Updated Pages
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
What is the area under the curve yx+x1 betweenx0 and class 10 maths JEE_Main
The volume of a sphere is dfrac43pi r3 cubic units class 10 maths JEE_Main
Which of the following is a good conductor of electricity class 10 chemistry JEE_Main
Other Pages
The adjoining diagram shows the spectral energy density class 11 physics JEE_MAIN
In a steady state of heat conduction the temperature class 11 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main