Answer
Verified
468.6k+ views
Hint: Degree of freedom is the number of independent motions a particle can undergo. To find out the degree of freedom we have to find the number of independent motions possible for that particular molecule. Here we have a triatomic gas and in order to find its degree of freedom, we check its possible motions in x, y and z directions.
Complete step by step answer:
We have to find the Degree of freedom of a triatomic molecule. A triatomic gas molecule has 3 atoms in it.
Consider a triatomic gas molecule as shown in the figure above.
We now consider the possible movements of this molecule in the x, y and z axis.
Here this triatomic gas can have a translatory motion along the x, y, and z axis. I.e. triatomic molecules can move along x direction, y direction and z direction.
Hence the translatory degree of freedom of this molecule is 3
Now let us consider the rotational degree of freedom of this molecule.
For that we place two atoms of the molecule on the x axis. Then it can rotate about y axis and z axis. It also has a significant rotation about x axis because here the third atom has a moment of inertia about x axis even if the other two atoms do not have the inertia.
And thus the rotational degree of freedom of this molecule is also three.
Hence the degree of freedom= Translatory degree of freedom + Rotational degree of freedom
=3+3=6
Therefore at moderate temperature the degree of freedom of a triatomic gas equals to 6.
So, the correct answer is “Option A”.
Note: We can also find the degree of freedom by using the general expression
Degree of freedom, $\text{DF=3N-n}$ where N is the total number of particles and n is holonomic constraints.
We have a triatomic molecule. And hence the number of particles, $\text{N=3}$. And since the separation between 3 atoms is fixed, the number of holonomic constraints, $\text{n=3}$.
Therefore we have,
$\begin{align}
& \text{DF=3 }\!\!\times\!\!\text{ 3 - 3} \\
& \text{DF=9 - 3} \\
& \text{DF=6} \\
\end{align}$
Thus the degree of freedom of a triatomic molecule is 6.
Complete step by step answer:
We have to find the Degree of freedom of a triatomic molecule. A triatomic gas molecule has 3 atoms in it.
Consider a triatomic gas molecule as shown in the figure above.
We now consider the possible movements of this molecule in the x, y and z axis.
Here this triatomic gas can have a translatory motion along the x, y, and z axis. I.e. triatomic molecules can move along x direction, y direction and z direction.
Hence the translatory degree of freedom of this molecule is 3
Now let us consider the rotational degree of freedom of this molecule.
For that we place two atoms of the molecule on the x axis. Then it can rotate about y axis and z axis. It also has a significant rotation about x axis because here the third atom has a moment of inertia about x axis even if the other two atoms do not have the inertia.
And thus the rotational degree of freedom of this molecule is also three.
Hence the degree of freedom= Translatory degree of freedom + Rotational degree of freedom
=3+3=6
Therefore at moderate temperature the degree of freedom of a triatomic gas equals to 6.
So, the correct answer is “Option A”.
Note: We can also find the degree of freedom by using the general expression
Degree of freedom, $\text{DF=3N-n}$ where N is the total number of particles and n is holonomic constraints.
We have a triatomic molecule. And hence the number of particles, $\text{N=3}$. And since the separation between 3 atoms is fixed, the number of holonomic constraints, $\text{n=3}$.
Therefore we have,
$\begin{align}
& \text{DF=3 }\!\!\times\!\!\text{ 3 - 3} \\
& \text{DF=9 - 3} \\
& \text{DF=6} \\
\end{align}$
Thus the degree of freedom of a triatomic molecule is 6.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers