Answer
Verified
470.4k+ views
Hint: Two Angles are Supplementary when they add up to \[{180^ \circ }\]. The two angles (\[{140^ \circ }\]and \[{40^ \circ }\]) are Supplementary Angles, because they add up to \[{180^ \circ }\]. Notice that together they make a straight angle. When the sum of two angles is \[{180^ \circ }\], then the angles are known as supplementary angles. In other words, if two angles add up, to form a straight angle, then those angles are referred to as supplementary angles. These two angles form a linear angle, where if one angle is x, then the other the angle is \[\left( {180 - x} \right)\].
Complete step by step solution: In geometry, there are many types of angles with many different measures. Some angles are related to other angles because of how their measures are related. This is the case with supplementary angles, and we have a nice rule to help us understand the definition of the supplement of an angle.The supplement of an angle, is another angle, such that the sum of the measure of first angle and the measure of second angle is equal to \[{180^ \circ }\]
Let the angle be \[x\]
Therefore, its supplementary angle would be \[\left( {180 - x} \right)\]
According to the question,
\[x = \dfrac{1}{5}{\text{ }} \times \left( {180 - x} \right)\]
After Cross multiplying, we get
\[6x = 180\]
Divide both sides by \[6\], we get
\[\begin{gathered}
x = \dfrac{{180}}{6} \\
x = 30 \\
\end{gathered} \]
Therefore, the angle will be \[{30^ \circ }\]. So the answer of this question will be \[{30^ \circ }\]
Note:When the two angles add to \[{180^ \circ }\], we say they "Supplement" each other. Supplement comes from Latin supplier, to complete or "supply" what is needed
Complete step by step solution: In geometry, there are many types of angles with many different measures. Some angles are related to other angles because of how their measures are related. This is the case with supplementary angles, and we have a nice rule to help us understand the definition of the supplement of an angle.The supplement of an angle, is another angle, such that the sum of the measure of first angle and the measure of second angle is equal to \[{180^ \circ }\]
Let the angle be \[x\]
Therefore, its supplementary angle would be \[\left( {180 - x} \right)\]
According to the question,
\[x = \dfrac{1}{5}{\text{ }} \times \left( {180 - x} \right)\]
After Cross multiplying, we get
\[6x = 180\]
Divide both sides by \[6\], we get
\[\begin{gathered}
x = \dfrac{{180}}{6} \\
x = 30 \\
\end{gathered} \]
Therefore, the angle will be \[{30^ \circ }\]. So the answer of this question will be \[{30^ \circ }\]
Note:When the two angles add to \[{180^ \circ }\], we say they "Supplement" each other. Supplement comes from Latin supplier, to complete or "supply" what is needed
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE