Answer
Verified
493.2k+ views
Hint: As, in the $\Delta ABC$ , we are given with angle A and length of the side AB. So, now we can use simple trigonometric ratios of sin and cosine to find the length of the remaining two sides and the angle B of the triangle ABC.
Complete step-by-step answer:
In the above $\Delta ABC$ , concerning the $\angle A$ side BC is the perpendicular, side AC is base and side AB is the hypotenuse respectively.
We know that $sin\theta =\dfrac{perpendicular}{hypotenuse}=\dfrac{BC}{AB}$ .
The angle that we are considering is $\angle A$ . So , $\theta =\angle A=30{}^\circ $ .
Also, we know that $sin30{}^\circ =\dfrac{1}{2}$ .
$\Rightarrow sin\theta =sin30{}^\circ =\dfrac{1}{2}=\dfrac{BC}{AB}.........(i)$
Now, in the question, we are given that the length of side AB is given as AB = 40 units . So, substituting AB = 40 units in equation ( i ), we get:
$\begin{align}
& \dfrac{BC}{AB}=\dfrac{1}{2} \\
& \Rightarrow \dfrac{BC}{40}=\dfrac{1}{2} \\
& \Rightarrow BC=\dfrac{40}{2} \\
& \Rightarrow BC=20 \\
\end{align}$
$\Rightarrow $ Value of BC = 20 units.
Now, we know that in a right-angled triangle, if we know the length of any two sides of the triangle, we can find the third side using the Pythagorean Theorem.
Pythagoras theorem says that in a right-angled triangle, $Hypotenus{{e}^{2}}=Bas{{e}^{2}}+Perpendicula{{r}^{2}}$
Here, the unknown side is AC. So, according to Pythagoras Theorem, $A{{B}^{2}}=A{{C}^{2}}+B{{C}^{2}}$
Hence, by substituting the values of AB and BC, we get:
${{40}^{2}}=A{{C}^{2}}+{{20}^{2}}$
$\Rightarrow A{{C}^{2}}={{40}^{2}}-{{20}^{2}}$
$\Rightarrow A{{C}^{2}}=1600-400$
$\begin{align}
& \Rightarrow A{{C}^{2}}=1200 \\
& \Rightarrow AC=\sqrt{1200} \\
& \Rightarrow AC=20\sqrt{3} \\
\end{align}$
Therefore, the value of $AC=20\sqrt{3}$units.
Now, we have to find the angle B of the triangle ABC. Let us assume that the angle B = $\theta $ , i.e. $\angle B=\theta $ .
Now, in the above $\Delta ABC$ , concerning the $\angle B$ side AC is the perpendicular, side BC is base and side AB is the hypotenuse respectively.
We know that $sin\theta =\dfrac{perpendicular}{hypotenuse}=\dfrac{AC}{AB}$ .
Here, $AC=20\sqrt{3}$ and AB = 40 units.
$\begin{align}
& \Rightarrow \sin \theta =\dfrac{20\sqrt{3}}{40}=\dfrac{\sqrt{3}}{2} \\
& \Rightarrow \sin \theta =\dfrac{\sqrt{3}}{2} \\
& \Rightarrow \theta =60{}^\circ \\
\end{align}$
Hence, the value of $\angle B=60{}^\circ $ .
Note: Be careful while substituting the values of the trigonometric functions. Students generally get confused and make silly mistakes.
Complete step-by-step answer:
In the above $\Delta ABC$ , concerning the $\angle A$ side BC is the perpendicular, side AC is base and side AB is the hypotenuse respectively.
We know that $sin\theta =\dfrac{perpendicular}{hypotenuse}=\dfrac{BC}{AB}$ .
The angle that we are considering is $\angle A$ . So , $\theta =\angle A=30{}^\circ $ .
Also, we know that $sin30{}^\circ =\dfrac{1}{2}$ .
$\Rightarrow sin\theta =sin30{}^\circ =\dfrac{1}{2}=\dfrac{BC}{AB}.........(i)$
Now, in the question, we are given that the length of side AB is given as AB = 40 units . So, substituting AB = 40 units in equation ( i ), we get:
$\begin{align}
& \dfrac{BC}{AB}=\dfrac{1}{2} \\
& \Rightarrow \dfrac{BC}{40}=\dfrac{1}{2} \\
& \Rightarrow BC=\dfrac{40}{2} \\
& \Rightarrow BC=20 \\
\end{align}$
$\Rightarrow $ Value of BC = 20 units.
Now, we know that in a right-angled triangle, if we know the length of any two sides of the triangle, we can find the third side using the Pythagorean Theorem.
Pythagoras theorem says that in a right-angled triangle, $Hypotenus{{e}^{2}}=Bas{{e}^{2}}+Perpendicula{{r}^{2}}$
Here, the unknown side is AC. So, according to Pythagoras Theorem, $A{{B}^{2}}=A{{C}^{2}}+B{{C}^{2}}$
Hence, by substituting the values of AB and BC, we get:
${{40}^{2}}=A{{C}^{2}}+{{20}^{2}}$
$\Rightarrow A{{C}^{2}}={{40}^{2}}-{{20}^{2}}$
$\Rightarrow A{{C}^{2}}=1600-400$
$\begin{align}
& \Rightarrow A{{C}^{2}}=1200 \\
& \Rightarrow AC=\sqrt{1200} \\
& \Rightarrow AC=20\sqrt{3} \\
\end{align}$
Therefore, the value of $AC=20\sqrt{3}$units.
Now, we have to find the angle B of the triangle ABC. Let us assume that the angle B = $\theta $ , i.e. $\angle B=\theta $ .
Now, in the above $\Delta ABC$ , concerning the $\angle B$ side AC is the perpendicular, side BC is base and side AB is the hypotenuse respectively.
We know that $sin\theta =\dfrac{perpendicular}{hypotenuse}=\dfrac{AC}{AB}$ .
Here, $AC=20\sqrt{3}$ and AB = 40 units.
$\begin{align}
& \Rightarrow \sin \theta =\dfrac{20\sqrt{3}}{40}=\dfrac{\sqrt{3}}{2} \\
& \Rightarrow \sin \theta =\dfrac{\sqrt{3}}{2} \\
& \Rightarrow \theta =60{}^\circ \\
\end{align}$
Hence, the value of $\angle B=60{}^\circ $ .
Note: Be careful while substituting the values of the trigonometric functions. Students generally get confused and make silly mistakes.
Recently Updated Pages
The western coastal strip south of Goa is referred class 10 social science CBSE
The western coastal strip south of Goa is referred class 10 social science CBSE
The western coastal strip south of Goa is referred class 10 social science CBSE
The Quit India Resolution in 1942 was one of the final class 10 social science CBSE
The Quit India Resolution in 1942 was one of the Final class 10 social science CBSE
The Quit India Resolution in 1942 was one of the final class 10 social science CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Chahalgani means ATurkish noble under Iltutmish BSlaves class 10 social science CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
the Gond raja of Garha Katanga assumed the title of class 10 social science CBSE