Answer
Verified
431.4k+ views
Hint: In this problem, we have to find the value of x from the given triangle ABC. We are given that the line DE is parallel to BC. We are also given that we can use Thales Theorem and substitute the given value in the fraction to find the value of x.
Complete step by step answer:
We know that the given triangle ABC, where the line DE is parallel to BC, \[DE\parallel BC\].
We know that the Thales Theorem from the diagram whose line DE is parallel to BC is,
\[\dfrac{AD}{DB}=\dfrac{AE}{EC}\]
We can write the above theorem as,
\[AD\times EC=AE\times DB\]
We know that the given values are, \[AD=x,DB=x-2,AE=x+2,EC=x-1\].
We can substitute these values in the above theorem, we get
\[\Rightarrow x\times \left( x-1 \right)=\left( x+2 \right)\times \left( x-2 \right)\]
We can multiply the term in the left-hand side and we can use the algebraic formula in the right-hand side, we get
\[\Rightarrow {{x}^{2}}-x={{x}^{2}}-4\]
Now we can cancel similar terms in both the left-hand side and the right-hand side in the above step, we get
\[\Rightarrow -x=-4\]
Now we can multiply -1 on both the left-hand side and the right-hand side in the above step, we get
\[\Rightarrow x=4\]
Therefore, the value of x is 4.
Note: Students make mistakes while writing the Thales theorem form the given diagram, which should be concentrated. To solve this problem, we have to understand the concept of Thales theorem to be used. We should go through the question properly, in order to find what should be taken from the question.
Complete step by step answer:
We know that the given triangle ABC, where the line DE is parallel to BC, \[DE\parallel BC\].
We know that the Thales Theorem from the diagram whose line DE is parallel to BC is,
\[\dfrac{AD}{DB}=\dfrac{AE}{EC}\]
We can write the above theorem as,
\[AD\times EC=AE\times DB\]
We know that the given values are, \[AD=x,DB=x-2,AE=x+2,EC=x-1\].
We can substitute these values in the above theorem, we get
\[\Rightarrow x\times \left( x-1 \right)=\left( x+2 \right)\times \left( x-2 \right)\]
We can multiply the term in the left-hand side and we can use the algebraic formula in the right-hand side, we get
\[\Rightarrow {{x}^{2}}-x={{x}^{2}}-4\]
Now we can cancel similar terms in both the left-hand side and the right-hand side in the above step, we get
\[\Rightarrow -x=-4\]
Now we can multiply -1 on both the left-hand side and the right-hand side in the above step, we get
\[\Rightarrow x=4\]
Therefore, the value of x is 4.
Note: Students make mistakes while writing the Thales theorem form the given diagram, which should be concentrated. To solve this problem, we have to understand the concept of Thales theorem to be used. We should go through the question properly, in order to find what should be taken from the question.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE