
Derive a relation between the Celsius and Fahrenheit scales of temperature using the fixed point in two different scales.
Answer
471.3k+ views
Hint: We know that the two scales used for temperature measurements are Celsius and Fahrenheit. We also know that the temperature in the centigrade scale will be expressed in degrees Celsius. So, we find the relationship and then derive the above statement to correct two separate scales.
Formula used:
Celsius to Fahrenheit,
$F = \left( {\dfrac{9}{5} \times C} \right) + 32$
Fahrenheit to Celsius,
$C = \dfrac{5}{9}\left( {F - 32} \right)$
Where,
$F$ is the temperature in Fahrenheit,
$C$ is the temperature on the centigrade scale.
Complete step-by-step solution:
Given by,
The relation between the Celsius and Fahrenheit scales,
The Celsius-Fahrenheit relationship is direct. Celsius is specifically linked to Fahrenheit.
Which suggests that
As the temperature rises on the Celsius scale, the equivalent temperature of Fahrenheit would also be high.
As the temperature falls on the Celsius scale, the temperature equal to Fahrenheit would also be low.
$\dfrac{{C - L.F.P}}{{U.F.P - L.F.P}} = \dfrac{{F - L.F.P}}{{U.F.P - L.F.P}}$
Here, we define,
$L.F.P$ is Lower Fixed Point
$U.F.P$ is Upper Fixed Point
According to that,
$\dfrac{{C - 0}}{{100 - 0}} = \dfrac{{F - 32}}{{212 - 32}}$
On simplifying,
We get,
$\dfrac{C}{{100}} = \dfrac{{F - 32}}{{180}}$
Again, we resolve the above equation,
We get,
$\dfrac{C}{5} = \dfrac{{\left( {F - 32} \right)}}{9}$
A temperature scale based on the freezing point of water at ${0^ \circ }C$ and the boiling point of water at ${100^ \circ }C$ is the Celsius scale, or centigrade scale. The Fahrenheit scale is a temperature scale based on the ${32^ \circ }F$ water freezing point and the ${220^ \circ }F$ water boiling point.
Hence,
Thus, the Celsius and Fahrenheit scales of temperature using the fixed point in two different scales $\dfrac{C}{5} = \dfrac{{\left( {F - 32} \right)}}{9}$
Note: The above derivation is evaluating the relation between Celsius and Fahrenheit is proportional. Both have different freezing points of water and both follow the varied unit difference between each scale. That is because of the Celsius temperature scale, part of the metric system that denotes the temperature.
Formula used:
Celsius to Fahrenheit,
$F = \left( {\dfrac{9}{5} \times C} \right) + 32$
Fahrenheit to Celsius,
$C = \dfrac{5}{9}\left( {F - 32} \right)$
Where,
$F$ is the temperature in Fahrenheit,
$C$ is the temperature on the centigrade scale.
Complete step-by-step solution:
Given by,
The relation between the Celsius and Fahrenheit scales,
The Celsius-Fahrenheit relationship is direct. Celsius is specifically linked to Fahrenheit.
Which suggests that
As the temperature rises on the Celsius scale, the equivalent temperature of Fahrenheit would also be high.
As the temperature falls on the Celsius scale, the temperature equal to Fahrenheit would also be low.
$\dfrac{{C - L.F.P}}{{U.F.P - L.F.P}} = \dfrac{{F - L.F.P}}{{U.F.P - L.F.P}}$
Here, we define,
$L.F.P$ is Lower Fixed Point
$U.F.P$ is Upper Fixed Point
According to that,
$\dfrac{{C - 0}}{{100 - 0}} = \dfrac{{F - 32}}{{212 - 32}}$
On simplifying,
We get,
$\dfrac{C}{{100}} = \dfrac{{F - 32}}{{180}}$
Again, we resolve the above equation,
We get,
$\dfrac{C}{5} = \dfrac{{\left( {F - 32} \right)}}{9}$
A temperature scale based on the freezing point of water at ${0^ \circ }C$ and the boiling point of water at ${100^ \circ }C$ is the Celsius scale, or centigrade scale. The Fahrenheit scale is a temperature scale based on the ${32^ \circ }F$ water freezing point and the ${220^ \circ }F$ water boiling point.
Hence,
Thus, the Celsius and Fahrenheit scales of temperature using the fixed point in two different scales $\dfrac{C}{5} = \dfrac{{\left( {F - 32} \right)}}{9}$
Note: The above derivation is evaluating the relation between Celsius and Fahrenheit is proportional. Both have different freezing points of water and both follow the varied unit difference between each scale. That is because of the Celsius temperature scale, part of the metric system that denotes the temperature.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

Number of valence electrons in Chlorine ion are a 16 class 11 chemistry CBSE

What is the modal class for the following table given class 11 maths CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
