Answer
Verified
449.7k+ views
Hint Total opposition that a circuit or a part of a circuit presents to electric current. Impedance includes both resistance and reactance we can find the formula by using both the reactance of inductor as well as resistor.
Complete step by step solution
Impedance :The measure of the opposition of an electric current to the energy flow when the voltage is applied.For example the impedance is a line of resistance within an electrical current.
Consider a circuit containing a resistor of resistance R and an inductor of inductance L connected in series.
As the applied voltage is given by
$V = {V_0}\sin \omega t$
Let ${V_R}$ be the voltage across resistor
${V_L}$ be the voltage across inductor
As we know Voltage ${V_R}$ and currently I are in the same phase.
Whereas ${V_L}$ leads current by $\dfrac{\pi }{2}$
Which means ${V_R}$ and ${V_L}$ are mutually perpendicular.
The applied voltage is obtained by the resultant of ${V_R}$ and ${V_L}$
So,
$V = \sqrt {{V_R}^2 + {V_L}^2} $
And ${V_R} = Ri$,
${V_L} = {X_L}i = \omega Li$
Where L is impedance,
i is current,
and $\omega $ is frequency
Here ${X_L}$ is called inductive reactance
So putting values of ${V_R}$ and ${V_L}$
We get
$V = \sqrt {{{(Ri)}^2} + {{({X_L}i)}^2}} $
So impedance
$Z = \dfrac{V}{i} = \sqrt {{R^2} + {X_L}^2} $
Hence
$Z = \sqrt {{R^2} + {{(\omega L)}^2}} $
Note Impedance would be different if the capacitor is also in the circuit. In that case the reactance of the capacitor is also considered along with the inductor and resistance. Remember the impedance can never be greater than R.
Complete step by step solution
Impedance :The measure of the opposition of an electric current to the energy flow when the voltage is applied.For example the impedance is a line of resistance within an electrical current.
Consider a circuit containing a resistor of resistance R and an inductor of inductance L connected in series.
As the applied voltage is given by
$V = {V_0}\sin \omega t$
Let ${V_R}$ be the voltage across resistor
${V_L}$ be the voltage across inductor
As we know Voltage ${V_R}$ and currently I are in the same phase.
Whereas ${V_L}$ leads current by $\dfrac{\pi }{2}$
Which means ${V_R}$ and ${V_L}$ are mutually perpendicular.
The applied voltage is obtained by the resultant of ${V_R}$ and ${V_L}$
So,
$V = \sqrt {{V_R}^2 + {V_L}^2} $
And ${V_R} = Ri$,
${V_L} = {X_L}i = \omega Li$
Where L is impedance,
i is current,
and $\omega $ is frequency
Here ${X_L}$ is called inductive reactance
So putting values of ${V_R}$ and ${V_L}$
We get
$V = \sqrt {{{(Ri)}^2} + {{({X_L}i)}^2}} $
So impedance
$Z = \dfrac{V}{i} = \sqrt {{R^2} + {X_L}^2} $
Hence
$Z = \sqrt {{R^2} + {{(\omega L)}^2}} $
Note Impedance would be different if the capacitor is also in the circuit. In that case the reactance of the capacitor is also considered along with the inductor and resistance. Remember the impedance can never be greater than R.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE