Answer
Verified
403.3k+ views
Hint: Biot- Savart law helps to find the magnetic field inside the solenoid. Each turn $n$ is the solenoid has the length$l$. Then applying the Biot- Savart law we get the magnetic field inside the solenoid as
$B = \dfrac{{{\mu _0}nI}}{l}$
Where, ${\mu _0}$ is the permeability of free space, $n$is the number of turns and $I$is the current in the solenoid and $l$ is the length.
And the magnetic flux is proportional to the current through the solenoid. Thus the proportionality constant is the coefficient of self- inductance of the solenoid.
Complete Step by step solution
We are considering a solenoid with $n$ turns with length $l$ . The area of cross section is $A$. The solenoid carriers current $I$ and $B$ is the magnetic field inside the solenoid.
The magnetic field $B$ is given as,
$B = \dfrac{{{\mu _0}nI}}{l}$
Where, ${\mu _0}$ is the permeability of free space, $n$ is the number of turns and $I$ is the current in the solenoid and $l$ is the length.
The magnetic flux is the product of the magnetic field and area of the cross section.
Here the magnetic flux per turn is given as,
$\phi = B \times A$
Substituting the values in the above expression,
$\phi = \dfrac{{{\mu _0}nI}}{l} \times A$
Hence there is $n$ number of turns, the total magnetic flux is given as,
\[
\phi = \dfrac{{{\mu _0}nI}}{l} \times A \times n \\
\phi = \dfrac{{{\mu _0}{n^2}IA}}{l}..............\left( 1 \right) \\
\]
If $L$ is the coefficient of self-inductance of the solenoid, then
$\phi = LI...........\left( 2 \right)$
Comparing the two equations we get,
\[
LI = \dfrac{{{\mu _0}{n^2}IA}}{l} \\
L = \dfrac{{{\mu _0}{n^2}A}}{l} \\
\]
So the expression for the coefficient of self-inductance is \[\dfrac{{{\mu _0}{n^2}A}}{l}\].
Note The flux through one solenoid coil is $\phi = B \times A$ where the area of the cross section of each turn is $A$.
For the $n$ number of turns then the total magnetic flux is $\phi = n \times B \times A$. The magnetic field is uniform inside the solution.
$B = \dfrac{{{\mu _0}nI}}{l}$
Where, ${\mu _0}$ is the permeability of free space, $n$is the number of turns and $I$is the current in the solenoid and $l$ is the length.
And the magnetic flux is proportional to the current through the solenoid. Thus the proportionality constant is the coefficient of self- inductance of the solenoid.
Complete Step by step solution
We are considering a solenoid with $n$ turns with length $l$ . The area of cross section is $A$. The solenoid carriers current $I$ and $B$ is the magnetic field inside the solenoid.
The magnetic field $B$ is given as,
$B = \dfrac{{{\mu _0}nI}}{l}$
Where, ${\mu _0}$ is the permeability of free space, $n$ is the number of turns and $I$ is the current in the solenoid and $l$ is the length.
The magnetic flux is the product of the magnetic field and area of the cross section.
Here the magnetic flux per turn is given as,
$\phi = B \times A$
Substituting the values in the above expression,
$\phi = \dfrac{{{\mu _0}nI}}{l} \times A$
Hence there is $n$ number of turns, the total magnetic flux is given as,
\[
\phi = \dfrac{{{\mu _0}nI}}{l} \times A \times n \\
\phi = \dfrac{{{\mu _0}{n^2}IA}}{l}..............\left( 1 \right) \\
\]
If $L$ is the coefficient of self-inductance of the solenoid, then
$\phi = LI...........\left( 2 \right)$
Comparing the two equations we get,
\[
LI = \dfrac{{{\mu _0}{n^2}IA}}{l} \\
L = \dfrac{{{\mu _0}{n^2}A}}{l} \\
\]
So the expression for the coefficient of self-inductance is \[\dfrac{{{\mu _0}{n^2}A}}{l}\].
Note The flux through one solenoid coil is $\phi = B \times A$ where the area of the cross section of each turn is $A$.
For the $n$ number of turns then the total magnetic flux is $\phi = n \times B \times A$. The magnetic field is uniform inside the solution.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE